Variations in the neutral lipids of Dysdercus koenigii (Hemiptera) during its life cycle

1969 ◽  
Vol 15 (1) ◽  
pp. 161-166 ◽  
Author(s):  
Hari C. Agarwal ◽  
K.D.P. Rao
2021 ◽  
Author(s):  
Agnieszka Zienkiewicz ◽  
Marta Saldat ◽  
Krzysztof Zienkiewicz

In plants, lipids serve as one of the major and vital cellular constituents. Neutral lipids reserves play an essential role in the plant life cycle by providing carbon and energy equivalents for periods of active metabolism. The most common form of lipid storage are triacylglycerols (TAGs) packed into specialized organelles called lipid droplets (LDs). They have been observed in diverse plant organs and tissues, like oil seeds or pollen grains. LDs consist of a core, composed mostly of TAGs, enclosed by a single layer of phospholipids that is decorated by a unique set of structural proteins. Moreover, the recent advances in exploration of LDs proteome revealed a plethora of diverse proteins interacting with LDs. This is likely the result of a highly dynamic nature of these organelles and their involvement in many diverse aspect of cellular metabolism, tightly synchronized with plant developmental programs and directly related to plant-environment interactions. In this review we summarize and discuss the current progress in understanding the role of LDs and their cargo during plants life cycle, with a special emphasis on developmental aspects.


2006 ◽  
Vol 63 (12) ◽  
pp. 1355-1369 ◽  
Author(s):  
K. Athenstaedt ◽  
G. Daum
Keyword(s):  

Author(s):  
J. G. Robertson ◽  
D. F. Parsons

The extraction of lipids from tissues during fixation and embedding for electron microscopy is widely recognized as a source of possible artifact, especially at the membrane level of cell organization. Lipid extraction is also a major disadvantage in electron microscope autoradiography of radioactive lipids, as in studies of the uptake of radioactive fatty acids by intestinal slices. Retention of lipids by fixation with osmium tetroxide is generally limited to glycolipids, phospholipids and highly unsaturated neutral lipids. Saturated neutral lipids and sterols tend to be easily extracted by organic dehydrating reagents prior to embedding. Retention of the more saturated lipids in embedded tissue might be achieved by developing new cross-linking reagents, by the use of highly water soluble embedding materials or by working at very low temperatures.


Author(s):  
Betty Ruth Jones ◽  
Steve Chi-Tang Pan

INTRODUCTION: Schistosomiasis has been described as “one of the most devastating diseases of mankind, second only to malaria in its deleterious effects on the social and economic development of populations in many warm areas of the world.” The disease is worldwide and is probably spreading faster and becoming more intense than the overall research efforts designed to provide the basis for countering it. Moreover, there are indications that the development of water resources and the demands for increasing cultivation and food in developing countries may prevent adequate control of the disease and thus the number of infections are increasing.Our knowledge of the basic biology of the parasites causing the disease is far from adequate. Such knowledge is essential if we are to develop a rational approach to the effective control of human schistosomiasis. The miracidium is the first infective stage in the complex life cycle of schistosomes. The future of the entire life cycle depends on the capacity and ability of this organism to locate and enter a suitable snail host for further development, Little is known about the nervous system of the miracidium of Schistosoma mansoni and of other trematodes. Studies indicate that miracidia contain a well developed and complex nervous system that may aid the larvae in locating and entering a susceptible snail host (Wilson, 1970; Brooker, 1972; Chernin, 1974; Pan, 1980; Mehlhorn, 1988; and Jones, 1987-1988).


Author(s):  
Randolph W. Taylor ◽  
Henrie Treadwell

The plasma membrane of the Slime Mold, Physarum polycephalum, process unique morphological distinctions at different stages of the life cycle. Investigations of the plasma membrane of P. polycephalum, particularly, the arrangements of the intramembranous particles has provided useful information concerning possible changes occurring in higher organisms. In this report Freeze-fracture-etched techniques were used to investigate 3 hours post-fusion of the macroplasmodia stage of the P. polycephalum plasma membrane.Microplasmodia of Physarum polycephalum (M3C), axenically maintained, were collected in mid-expotential growth phase by centrifugation. Aliquots of microplasmodia were spread in 3 cm circles with a wide mouth pipette onto sterile filter paper which was supported on a wire screen contained in a petri dish. The cells were starved for 2 hrs at 24°C. After starvation, the cells were feed semidefined medium supplemented with hemin and incubated at 24°C. Three hours after incubation, samples were collected randomly from the petri plates, placed in plancettes and frozen with a propane-nitrogen jet freezer.


1994 ◽  
Vol 11 (1) ◽  
pp. 47-56
Author(s):  
Virginia C. Day ◽  
Zachary F. Lansdowne ◽  
Richard A Moynihan ◽  
John A. Vitkevich

1978 ◽  
Vol 23 (2) ◽  
pp. 85-86
Author(s):  
BERTRAM J. COHLER
Keyword(s):  

1978 ◽  
Vol 23 (9) ◽  
pp. 697-697
Author(s):  
ALVIN G. BURSTEIN

Sign in / Sign up

Export Citation Format

Share Document