Application of a mathematical model for two component receptor binding to two high affinity oestrogen binding sites in nuclei from dmba rat mammary tumours

1988 ◽  
Vol 29 (4) ◽  
pp. 375-380 ◽  
Author(s):  
E.R. Clark ◽  
D. Mackay ◽  
S.P. Robinson
2021 ◽  
Author(s):  
Weilin Lin ◽  
Jannatul Rafeya ◽  
Vanessa Roschewitz ◽  
David Smith ◽  
Adrian Keller ◽  
...  

The binding of SARS-CoV and SARS-CoV-2 to the ACE2 receptor on human cells is mediated by the spike protein subunit 1 (S1) on the virus surfaces, while the receptor binding domains (RBDs) of S1 are the major determinants for the interaction with ACE2 and dominant targets of neutralizing antibodies. However, at the virus-host interface, additional biomolecular interactions, although being relatively weak in affinity and low in specificity, could also contribute to viral attachment and play important roles in gain- or loss-of-function mutations. In this work, we performed a peptide scanning of the S1 domains of SARS-CoV and SARS-CoV-2 by synthesizing 972 16-mer native and mutated peptide fragments using a high throughput in situ array synthesis technology. By probing the array using fluorescently labelled ACE2, a number of previously unknown potential receptor binding sites of S1 have been revealed. 20 peptides were synthesized using solid phase peptide synthesis, in order to validate and quantify their binding to ACE2. Four ACE2-binding peptides were selected, to investigate whether they can be assembled through a biotinylated peptide/neutravidin system to achieve high affinity to ACE2. A number of constructs exhibited high affinity to ACE2 with Kd values of pM to low nM.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dapeng Sun ◽  
Zhe Sang ◽  
Yong Joon Kim ◽  
Yufei Xiang ◽  
Tomer Cohen ◽  
...  

AbstractInterventions against variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are urgently needed. Stable and potent nanobodies (Nbs) that target the receptor binding domain (RBD) of SARS-CoV-2 spike are promising therapeutics. However, it is unknown if Nbs broadly neutralize circulating variants. We found that RBD Nbs are highly resistant to variants of concern (VOCs). High-resolution cryoelectron microscopy determination of eight Nb-bound structures reveals multiple potent neutralizing epitopes clustered into three classes: Class I targets ACE2-binding sites and disrupts host receptor binding. Class II binds highly conserved epitopes and retains activity against VOCs and RBDSARS-CoV. Cass III recognizes unique epitopes that are likely inaccessible to antibodies. Systematic comparisons of neutralizing antibodies and Nbs provided insights into how Nbs target the spike to achieve high-affinity and broadly neutralizing activity. Structure-function analysis of Nbs indicates a variety of antiviral mechanisms. Our study may guide the rational design of pan-coronavirus vaccines and therapeutics.


1986 ◽  
Vol 11 (11) ◽  
pp. 1565-1569
Author(s):  
Katalin Horv�th ◽  
M�ria Wollemann

1994 ◽  
Vol 72 (03) ◽  
pp. 465-474 ◽  
Author(s):  
Neelesh Bangalore ◽  
William N Drohan ◽  
Carolyn L Orthner

SummaryActivated protein C (APC) is an antithrombotic serine proteinase having anticoagulant, profibrinolytic and anti-inflammatory activities. Despite its potential clinical utility, relatively little is known about its clearance mechanisms. In the present study we have characterized the interaction of APC and its active site blocked forms with human umbilical vein endothelial cells (HUVEC). At 4° C 125I-APC bound to HUVEC in a specific, time dependent, saturable and reversible manner. Scatchard analysis of the binding isotherm demonstrated a Kd value of 6.8 nM and total number of binding sites per cell of 359,000. Similar binding isotherms were obtained using radiolabeled protein C (PC) zymogen as well as D-phe-pro-arg-chloromethylketone (PPACK) inhibited APC indicating that a functional active site was not required. Competition studies showed that the binding of APC, PPACK-APC and PC were mutually exclusive suggesting that they bound to the same site(s). Proteolytic removal of the N-terminal γ-carboxyglutamic acid (gla) domain of PC abolished its ability to compete indicating that the gla-domain was essential for cell binding. Surprisingly, APC binding to these cells appeared to be independent of protein S, a cofactor of APC generally thought to be required for its high affinity binding to cell surfaces. The identity of the cell binding site(s), for the most part, appeared to be distinct from other known APC ligands which are associated with cell membranes or extracellular matrix including phospholipid, thrombomodulin, factor V, plasminogen activator inhibitor type 1 (PAI-1) and heparin. Pretreatment of HUVEC with antifactor VIII antibody caused partial inhibition of 125I-APC binding indicating that factor VIII or a homolog accounted for ∼30% of APC binding. Studies of the properties of surface bound 125I-APC or 125I-PC and their fate at 4°C compared to 37 °C were consistent with association of ∼25% of the initially bound radioligand with an endocytic receptor. However, most of the radioligand appeared not to be bound to an endocytic receptor and dissociated rapidly at 37° C in an intact and functional state. These data indicate the presence of specific, high affinity binding sites for APC and PC on the surface of HUVEC. While a minor proportion of binding sites may be involved in endocytosis, the identity and function of the major proportion is presently unknown. It is speculated that this putative receptor may be a further mechanisms of localizing the PC antithrombotic system to the vascular endothelium.


Author(s):  
Angelo Spinello ◽  
Andrea Saltalamacchia ◽  
Alessandra Magistrato

<p>The latest outbreak of a new pathogenic coronavirus (SARS-CoV-2) is provoking a global health, economic and societal crisis. All-atom simulations enabled us to uncover the key molecular traits underlying the high affinity of SARS-CoV-2 spike glycoprotein towards its human receptor, providing a rationale to its high infectivity. Harnessing this knowledge can boost developing effective medical countermeasures to fight the current global pandemic.</p>


1994 ◽  
Vol 269 (44) ◽  
pp. 27186-27192
Author(s):  
P A Staubs ◽  
D R Reichart ◽  
A R Saltiel ◽  
K L Milarski ◽  
H Maegawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document