Three-dimensional perturbation solution for a dynamic planar crack moving unsteadily in a model elastic solid

1994 ◽  
Vol 42 (5) ◽  
pp. 813-843 ◽  
Author(s):  
James R. Rice ◽  
Yehuda Ben-Zion ◽  
Kvung-Suk Klm
1987 ◽  
Vol 54 (4) ◽  
pp. 754-760 ◽  
Author(s):  
J. D. Achenbach ◽  
D. A. Sotiropoulos ◽  
H. Zhu

An inverse method for ultrasonic scattering data is proposed, to characterize a planar crack of general shape contained in an elastic solid. The method is based on an integral representation for the scattered field in the frequency domain. For a given scattered field the inverse problem has been formulated as a nonlinear optimization problem. At low frequencies its solution gives the location of the crack, the orientation of the crack-plane, and the crack-opening volumes. In addition the Mode I stress-intensity factor is obtained for a related static stress state corresponding to service loads.


2019 ◽  
Vol 25 (3) ◽  
pp. 501-514
Author(s):  
Mohamad Emami ◽  
Morteza Eskandari-Ghadi

In this review note, a historical scientific investigation is presented for Lamb’s problem in the mathematical theory of elasticity. This problem first appeared in 1904 in the pioneering paper of Professor Sir Horace Lamb (Lamb, H. On the propagation of tremors over the surface of an elastic solid. Philos Trans R Soc Lon 1904; 203: 1–42). Of special interest here are the analytical studies of the three-dimensional version of Lamb’s problem, which consists of a semi-infinite, homogeneous, isotropic elastic solid that is set in motion by the exertion of a dynamical point force applied suddenly on the surface of the domain. The objective of this paper is to offer a comprehensive introduction to Lamb’s problem for the reader, along with discussing its mathematical complexities. An account is given of the history of this ever-significant problem from its earlier stages to the more recent investigations via outlining and discussing different rigorous approaches and methods of solution that have been hitherto suggested. The limitations of different methods, if they exist, are also discussed. Eventually, various solution methods are compared considering their nature, advantages, and restrictions.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1401 ◽  
Author(s):  
Sorin Vlase ◽  
Adrian Eracle Nicolescu ◽  
Marin Marin

In classical mechanics, determining the governing equations of motion using finite element analysis (FEA) of an elastic multibody system (MBS) leads to a system of second order differential equations. To integrate this, it must be transformed into a system of first-order equations. However, this can also be achieved directly and naturally if Hamilton’s equations are used. The paper presents this useful alternative formalism used in conjunction with the finite element method for MBSs. The motion equations in the very general case of a three-dimensional motion of an elastic solid are obtained. To illustrate the method, two examples are presented. A comparison between the integration times in the two cases presents another possible advantage of applying this method.


2011 ◽  
Vol 194-196 ◽  
pp. 1496-1505
Author(s):  
Guang Hui Qing ◽  
Liang Wang ◽  
Li Zhong Shi

In the state space framework, a separable K-canonical formulation of rectangular element and explicit symplectic schemes for the static responses analysis of three-dimensional (3D) laminated plates are proposed in this paper. Firstly, the modified Hellinger-Reissner (H-R) variational principle for linear elastic solid is simply mentioned. Secondly, the separable J-canonical system with Hamiltonian H and the separable K-canonical formulation of rectangular element are constructed. Thirdly, on the basis of the symplectic difference schemes, the explicit symplectic schemes are employed to solve the separable K-canonical governing equation for a single plate. Then, to obtain the high accurate numerical results, a multi-scale iterative technique is also presented. Finally, based on the interlaminar compatibility condition (displacements and stresses), the excellent performance of the method presented in this paper is demonstrated by several numerical experiments of the static responses of laminated plates.


2009 ◽  
Vol 06 (02) ◽  
pp. 317-332 ◽  
Author(s):  
MENG-CHENG CHEN ◽  
HUI-QIN YU

In this work a three-dimensional planar crack on the surface of elastic half-space was analyzed under rolling contact load. The stresses interior to an elastic half-space body under rolling contact load and those produced by an infinitesimal displacement jump loop for the elastic half-space body were used to reduce the planar crack problem to the solution of a system of two-dimensional hypersingular integral equations with unknown displacement jump. The ideas of finite element discretization were employed to construct numerical solution schemes for solving the integral equations. An appropriate treatment of the associated hypersingular integral in the numerical solution to the integral equations was proposed in Hadamard's finite-part integral sense. The numerical results showed that the present procedure yields solutions with high accuracies. The stress intensity factors near the crack front edge under rolling contact load were indicated in graphical form with varying the crack shape, the radius of rolling contact zone and the friction coefficients, respectively. In addition, the influence of the lubricant infiltrating the crack surfaces on the crack propagation was also discussed in the paper.


1985 ◽  
Vol 52 (3) ◽  
pp. 565-570 ◽  
Author(s):  
T. C. T. Ting ◽  
Yijian Jin ◽  
S. C. Chou

When a two-dimensional elastic body that contains a notch or a crack is under a plane stress or plane strain deformation, the asymptotic solution of the stress near the apex of the notch or crack is simply a series of eigenfunctions of the form ρδf (ψ,δ) in which (ρ,ψ) is the polar coordinate with origin at the apex and δ is the eigenvalue. If the body is a three-dimensional elastic solid that contains axisymmetric notches or cracks and subjected to an axisymmetric deformation, the eigenfunctions associated with an eigenvalue contains not only the ρδ term, but also the ρδ+1, ρδ+2… terms. Therefore, the second and higher-order terms of the asymptotic solution are not simply the second and subsequent eigenfunctions. We present the eigenfunctions for transversely isotropic materials under an axisymmetric deformation. The degenerate case in which the eigenvalues p1 and p2 of the elasticity constants are identical is also considered. The latter includes the isotropic material as a special case.


2000 ◽  
Vol 53 (5) ◽  
pp. 117-146 ◽  
Author(s):  
Vera Petrova ◽  
Vitauts Tamuzs ◽  
Natalia Romalis

The results obtained on the problem of the interaction between a large crack and an array of microcracks or other microdefects are reviewed. The following problems are considered: interaction of main crack with microcracks in the two-dimensional case at tensile, shear or combined stress state; a closure of macro or microcracks as a result of their interaction, and the influence of this phenomenon on the stress intensity factor; the thermal cracking of an elastic solid caused by the macro-microcracks interaction and cracks closure; the interaction of a crack with an array of small pores or rigid inclusions; three-dimensional problems of the interaction of a penny-shaped crack with small penny-shaped microcracks. Discussed analytical results are based on the asymptotic analysis and the series solution to systems of singular integral equations describing the interaction of the macrocrack and microdefects. The series solutions were obtained with respect to the small parameter representing the ratio of micro- to macrocrack sizes. Throughout the review, the known solutions on the crack interaction are surveyed. The comparison with solutions to other relevant problems such as an interaction of semi-infinite crack with an array of finite cracks is given. The impact of a close crack location, and a comparison with relevant results of the continuum model approach are discussed. This review article includes 332 references.


1970 ◽  
Vol 37 (1) ◽  
pp. 116-122 ◽  
Author(s):  
W. W. Recker

The equations governing the dynamic deformation of an elastic solid are considered as a symmetric hyperbolic system of linear first-order partial-differential equations. The characteristic properties of the system are determined and a numerical method for obtaining the solution of mixed initial and boundary-value problems in elastodynamics is presented. The method, based on approximate integral relations along bicharacteristics, is an extension of the method proposed by Clifton for plane problems in dynamic elasticity and provides a system of difference equations, with second-order accuracy, for the explicit determination of the solution. Application of the method to a problem which has a known solution provides numerical evidence of the convergence and stability of the method.


Sign in / Sign up

Export Citation Format

Share Document