Early accretional history of the Earth and the Moon-forming event

Lithos ◽  
1993 ◽  
Vol 30 (3-4) ◽  
pp. 207-221 ◽  
Author(s):  
Stuart Ross Taylor
Keyword(s):  
The Moon ◽  
Author(s):  
Bradley L. Jolliff

Earth’s moon, hereafter referred to as “the Moon,” has been an object of intense study since before the time of the Apollo and Luna missions to the lunar surface and associated sample returns. As a differentiated rocky body and as Earth’s companion in the solar system, much study has been given to aspects such as the Moon’s surface characteristics, composition, interior, geologic history, origin, and what it records about the early history of the Earth-Moon system and the evolution of differentiated rocky bodies in the solar system. Much of the Apollo and post-Apollo knowledge came from surface geologic exploration, remote sensing, and extensive studies of the lunar samples. After a hiatus of nearly two decades following the end of Apollo and Luna missions, a new era of lunar exploration began with a series of orbital missions, including missions designed to prepare the way for longer duration human use and further exploration of the Moon. Participation in these missions has become international. The more recent missions have provided global context and have investigated composition, mineralogy, topography, gravity, tectonics, thermal evolution of the interior, thermal and radiation environments at the surface, exosphere composition and phenomena, and characteristics of the poles with their permanently shaded cold-trap environments. New samples were recognized as a class of achondrite meteorites, shown through geochemical and mineralogical similarities to have originated on the Moon. New sample-based studies with ever-improving analytical techniques and approaches have also led to significant discoveries such as the determination of volatile contents, including intrinsic H contents of lunar minerals and glasses. The Moon preserves a record of the impact history of the solar system, and new developments in timing of events, sample based and model based, are leading to a new reckoning of planetary chronology and the events that occurred in the early solar system. The new data provide the grist to test models of formation of the Moon and its early differentiation, and its thermal and volcanic evolution. Thought to have been born of a giant impact into early Earth, new data are providing key constraints on timing and process. The new data are also being used to test hypotheses and work out details such as for the magma ocean concept, the possible existence of an early magnetic field generated by a core dynamo, the effects of intense asteroidal and cometary bombardment during the first 500 million–600 million years, sequestration of volatile compounds at the poles, volcanism through time, including new information about the youngest volcanism on the Moon, and the formation and degradation processes of impact craters, so well preserved on the Moon. The Moon is a natural laboratory and cornerstone for understanding many processes operating in the space environment of the Earth and Moon, now and in the past, and of the geologic processes that have affected the planets through time. The Moon is a destination for further human exploration and activity, including use of valuable resources in space. It behooves humanity to learn as much about Earth’s nearest neighbor in space as possible.


Reliable estimates of the bulk composition are so far restricted to the three planetary objects from which we have samples for laboratory investigation, i.e. the Earth, the Moon and the eucrite parent asteroid. The last, the parent body of the eucrite— diogenite family of meteorites, an object that like Earth and Moon underwent magmatic differentiations, seems to have an almost chondritic composition except for a considerable depletion of all moderately volatile (Na, K, Rb, F, etc.) and highly volatile (Cl, Br, Cd, Pb, etc.) elements. The Moon is also depleted in moderately volatile and volatile elements compared to carbonaceous chondrites of type 1 (Cl) and also compared to the Earth. Again normalized to Cl and Si the Earth’s mantle and the Moon are slightly enriched in refractory lithophile elements and in magnesium. It might be that this enrichment is fictitious and only due to the normalization to Si and that both Earth’s mantle and Moon are depleted in Si, which partly entered the Earth’s core in metallic form. The striking depletion of the Earth’s mantle for the elements V, Cr and Mn can also be explained by their partial removal into the core. The similar abundances of V, Cr and Mn in the Moon and in the Earth’s mantle indicate the strong genetic relationship of Earth and Moon. Apart from their contents of metallic iron, all siderophile elements, moderately volatile and volatile elements, Earth and Moon are chemically very similar. It might well be that, with these exceptions and that of a varying degree of oxidation, all the inner planets have a similar chemistry. The chemical composition of the Earth’s mantle, for which reliable and accurate data have recently been obtained from the study of ultramafic nodules, yields important information about the accretion history of the Earth and that of the inner planets. It seems that accretion started with highly reduced material, with all Fe as metal and even Si and Cr, V and Mn partly in reduced state, followed by the accretion of more and more oxidized matter.


Icarus ◽  
1962 ◽  
Vol 1 (1-6) ◽  
pp. 357-363 ◽  
Author(s):  
H. Alfvén
Keyword(s):  
The Moon ◽  

ELFALAKY ◽  
2019 ◽  
Vol 3 (2) ◽  
Author(s):  
Heri Zulhadi

Abstract Hisab and rukyah are two methods of study used by Muslims to determine the start time of prayer, fasting, hajj and so forth. Periodesasi hisab rukyah, at a glance must have imagined what is meant by hisab rukyah. In the discourse about the Hijri calendar known by the term hisab and rukyah. Hisab is a calendar calculation system based on the average circulation of the moon that surrounds the earth and is conventionally defined. This reckoning system began since the establishment of Caliph Umar ibn Khattab ra (17H) as a reference for composing an enduring Islamic calendar. Another opinion says that this calendar system started in 16 H or 18 H, but the more popular is the year 17 H. While Rukyah is seeing the hilal directly with the naked eye or with the help of tools such as telescopes or other tools that support to see the new moon every end of Qamariyah month. The word rukyah is more famous as rukyatul hilalyaitu see moon. In this study, the author will describe a little about the history of hisab and rukyah in the period of prophets, companions, tabi'in, mid to modern period today. In this study, the scope of hisab rukya includes prayer times, Qibla direction, the beginning of Qamariyah month, eclipse and hijri calendar. Keyword: Hisab, Rukyah.


Author(s):  
Ian A. Crawford ◽  
Katherine H. Joy

The lunar geological record contains a rich archive of the history of the inner Solar System, including information relevant to understanding the origin and evolution of the Earth–Moon system, the geological evolution of rocky planets, and our local cosmic environment. This paper provides a brief review of lunar exploration to-date and describes how future exploration initiatives will further advance our understanding of the origin and evolution of the Moon, the Earth–Moon system and of the Solar System more generally. It is concluded that further advances will require the placing of new scientific instruments on, and the return of additional samples from, the lunar surface. Some of these scientific objectives can be achieved robotically, for example by in situ geochemical and geophysical measurements and through carefully targeted sample return missions. However, in the longer term, we argue that lunar science would greatly benefit from renewed human operations on the surface of the Moon, such as would be facilitated by implementing the recently proposed Global Exploration Roadmap.


1972 ◽  
Vol 47 ◽  
pp. 220-225
Author(s):  
N. A. Kozyrev

At present seismographs are operating on the Moon as well, installed there owing to the successful Apollo missions. However these data are insufficient for detailed statistic investigations. That is why in case of the Moon we are to use indirect indications of its activity, such as the data on transient light phenomena from the catalogues by Miss B. Middlehurst. Among the great number of earthquakes there were chosen only the strong earthquakes (magnitude 6.5) with focuses deeper than 70 km. According to these characteristics 630 earthquakes were selected from 1904 to 1967. In the Middlehurst catalogue during the same period about 370 transient events on the Moon are registrated. A distribution of lunar events on the days of an anomalistic month gives evidence of the influence of the Earth's tidal forces (the Middlehurst effect). It appears that the distribution of earthquakes gives a similar curve. Thus the tidal interaction of the Earth and the Moon establishes certain synchronism in tectonic activity of these planets. The further statistic analysis reveals some more causal relation between the processes of the Earth and the Moon. Strongly pronounced maximum of lunar events is observed with the interval of 2–3 days after the earthquakes and the maximum of earthquakes – with quite the same interval after the lunar events. The peaks of these maxima exceed the mean number of events by a factor 3. The Moon Earth system is the astronomical example of a direct interaction of the processes in the neighbouring celestial bodies.The corresponding experiments, made at the Pulkovo Observatory, confirm the possibility of immediate interactions of irreversible processes due to the change of physical properties of time. Thus we can form a chronology of orogenesis on the Moon judging from the data on the history of the Earth. Tectonic processes of the Earth and the Moon seem to be in such a close interaction as if the Moon were in direct contact with the Earth, i.e. in other words, were its seventh continent. These conclusions give evidence of the extreme importance of regular seismic observations on the Moon.


2009 ◽  
Vol 5 (S264) ◽  
pp. 475-477 ◽  
Author(s):  
David S. McKay ◽  
Louise Riofrio ◽  
Bonnie L. Cooper

AbstractThe lunar regolith (soil) has recorded a history of the early Moon, the Earth, and the entire solar system. A major goal of the developing lunar exploration program should be to find and play back existing fragments of that tape. By playing back the lunar tape, we can uncover a record of planetary bombardment, as well as solar and stellar variability. The Moon can tell us much about our place in the solar system and in the Universe. The lunar regolith has likely recorded the original meteoritic bombardment of Earth and Moon, a violent cataclysm that may have peaked around 4 GY, and the less intense bombardment occurring since that time. Decrease in bombardment allowed life to develop on Earth. This impact history is preserved as megaregolith layers, ejecta layers, impact melt rocks, and ancient impact breccias. The impact history for the Earth and Moon possibly had profound effects on the origin and development of life. Life may have arrived via meteorite transport from a more quiet body, such as Mars. The solar system may have experienced bursts of severe radiation from the Sun, other stars or from unknown sources. The lunar regolith has also recorded a radiation history in the form of implanted and trapped solar wind and solar flare materials and radiation damage. The Moon can be considered as a giant tape recorder containing the history of the solar system. Lunar soil generated by small impacts will be found sandwiched between layers of basalt or pyroclastic deposits. This filling constitutes a buried time capsule that is likely to contain well-preserved ancient regolith. Study of such samples will show us how the solar system has evolved and changed over time. The lunar recording can provide detailed snapshots of specific portions of solar and stellar variability.


1865 ◽  
Vol 2 (7) ◽  
pp. 13-16
Author(s):  
George E. Roberts

There has been no lack, in the history of geological science, of suggestions as to how our knowledge may be advanced upon those obscure questions which yet ask for solution, both in the physical and palæontological departments of the study. Sometimes, by a surprising intellectual endeavour, we have been carried up to the moon, and asked to discover where its missing waters are, without which our useful satellite appears to be a sort of ‘house to let,’—the idea having got into the mind which originated the enquiry, that the earth had appropriated the said waters for the necessities of a supposed cataclysmal epoch. Also, we have been taken down, by speculative thinkers, at divers times, to depths beneath our terraqueous surface, and asked to pin some fundamental articles of faith upon schemes which show all existing there to be either fire, or water, or a zone of meterorite-mineral, or one of soild steel, or that, nothing existing there, the interior of our planet is a vacuum.


Sign in / Sign up

Export Citation Format

Share Document