A study of Al/PtSi/Si thin film reaction kinetics by X-ray diffraction

1978 ◽  
Vol 18 (6) ◽  
pp. 483-484
1978 ◽  
Author(s):  
C. C. Goldsmith ◽  
G. A. Walker ◽  
M. J. Sullivan

2004 ◽  
Vol 45 (7) ◽  
pp. 2471-2473 ◽  
Author(s):  
Fanxiong Cheng ◽  
Chuanhai Jiang ◽  
Jiansheng Wu

Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3822
Author(s):  
Muhammad Faiz Aizamddin ◽  
Mohd Muzamir Mahat ◽  
Zaidah Zainal Zainal Ariffin ◽  
Irwan Samsudin ◽  
Muhammad Syafiek Mohd Razali ◽  
...  

Silver (Ag) particles have sparked considerable interest in industry and academia, particularly for health and medical applications. Here, we present the “green” and simple synthesis of an Ag particle-based silicone (Si) thin film for medical device applications. Drop-casting and peel-off techniques were used to create an Si thin film containing 10–50% (v/v) of Ag particles. Electro impedance spectroscopy (EIS), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and tensile tests were used to demonstrate the electrical conductivity, crystallinity, morphology-elemental, and mechanical properties, respectively. The oriented crystalline structure and excellent electronic migration explained the highest conductivity value (1.40 × 10−5 S cm−1) of the 50% Ag–Si thin film. The findings regarding the evolution of the conductive network were supported by the diameter and distribution of Ag particles in the Si film. However, the larger size of the Ag particles in the Si film resulted in a lower tensile stress of 68.23% and an elongation rate of 68.25% compared to the pristine Si film. The antibacterial activity of the Ag–Si film against methicillin-resistant Staphylococcus aureus (MRSA), Bacillus cereus (B. cereus), Klebsiella pneumoniae (K. pneumoniae), and Pseudomonas aeruginosa (P. aeruginosa) was investigated. These findings support Si–Ag thin films’ ability to avoid infection in any medical device application.


2004 ◽  
Vol 114-115 ◽  
pp. 67-71 ◽  
Author(s):  
Patrice Gergaud ◽  
Christian Rivero ◽  
Marc Gailhanou ◽  
Olivier Thomas ◽  
Benoit Froment ◽  
...  

2007 ◽  
Vol 253 (8) ◽  
pp. 3799-3802 ◽  
Author(s):  
S. Abhaya ◽  
G. Amarendra ◽  
S. Kalavathi ◽  
Padma Gopalan ◽  
M. Kamruddin ◽  
...  

2003 ◽  
Vol 775 ◽  
Author(s):  
Donghai Wang ◽  
David T. Johnson ◽  
Byron F. McCaughey ◽  
J. Eric Hampsey ◽  
Jibao He ◽  
...  

AbstractPalladium nanowires have been electrodeposited into mesoporous silica thin film templates. Palladium continually grows and fills silica mesopores starting from a bottom conductive substrate, providing a ready and efficient route to fabricate a macroscopic palladium nanowire thin films for potentially use in fuel cells, electrodes, sensors, and other applications. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicate it is possible to create different nanowire morphology such as bundles and swirling mesostructure based on the template pore structure.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Lars Banko ◽  
Phillip M. Maffettone ◽  
Dennis Naujoks ◽  
Daniel Olds ◽  
Alfred Ludwig

AbstractWe apply variational autoencoders (VAE) to X-ray diffraction (XRD) data analysis on both simulated and experimental thin-film data. We show that crystal structure representations learned by a VAE reveal latent information, such as the structural similarity of textured diffraction patterns. While other artificial intelligence (AI) agents are effective at classifying XRD data into known phases, a similarly conditioned VAE is uniquely effective at knowing what it doesn’t know: it can rapidly identify data outside the distribution it was trained on, such as novel phases and mixtures. These capabilities demonstrate that a VAE is a valuable AI agent for aiding materials discovery and understanding XRD measurements both ‘on-the-fly’ and during post hoc analysis.


1988 ◽  
Vol 119 ◽  
Author(s):  
Hung-Yu Liu ◽  
Peng-Heng Chang ◽  
Jim Bohlman ◽  
Hun-Lian Tsai

AbstractThe interaction of Al and W in the Si/SiO2/W-Ti/Al thin film system is studied quantitatively by glancing angle x-ray diffraction. The formation of Al-W compounds due to annealing is monitored by the variation of the integrated intensity from a few x-ray diffraction peaks of the corresponding compounds. The annealing was conducted at 400°C, 450°C and 500°C from 1 hour to 300 hours. The kinetics of compound formation is determined using x-ray diffraction data and verified by TEM observations. We will also show the correlation of the compound formation to the change of the electrical properties of these films.


1990 ◽  
Vol 7 (7) ◽  
pp. 308-311
Author(s):  
Li Chaorong ◽  
Mai Zhenhong ◽  
Cui Shufan ◽  
Zhou Junming ◽  
Yutian Wang

Sign in / Sign up

Export Citation Format

Share Document