Symposium on hydrodynamic performance enhancement for marine applications

1988 ◽  
Vol 15 (5) ◽  
pp. 505-506
2021 ◽  
Vol 930 ◽  
Author(s):  
Dong Zhang ◽  
Qiao-Gao Huang ◽  
Guang Pan ◽  
Li-Ming Yang ◽  
Wei-Xi Huang

The effects of chordwise deformation and the half-amplitude asymmetry on the hydrodynamic performance and vortex dynamics of batoid fish have been numerically investigated, in which the two parameters were represented by the wavenumber ( $W$ ) and the ratio of the half-amplitude above the longitudinal axis to that below ( $HAR$ ). Fin kinematics were prescribed based on biological data. Simulations were conducted using the immersed boundary method. It was found that moderate chordwise deformation enhances the thrust, saves the power and increases the efficiency. A large $HAR$ can also increase thrust performance. By using the derivative-moment transformation theory at several subdomains to capture the local vortical structures and a force decomposition, it was shown that, at high Strouhal numbers ( $St$ ), the tip vortex is the main source of thrust, whereas the leading-edge vortex (LEV) and trailing-edge vortex weaken the thrust generation. However, at lower $St$ , the LEV would enhance the thrust. The least deformation ( $W=0$ ) leads to the largest effective angle of attack, and thus the strongest vortices. However, moderate deformation ( $W=0.4$ ) has an optimal balance between the performance enhancement and the opposite effect of different local structures. The performance enhancement of $HAR$ was also due to the increase of the vortical contributions. This work provides a new insight into the role of vortices and the force enhancement mechanism in aquatic swimming.


Author(s):  
VT Gopinathan ◽  
J Bruce Ralphin Rose

Bioinspired aerodynamics is an emerging subject in the design of advanced flight vehicles with superior performance and minimum fuel consumption. In the present review article, a comprehensive evaluation is focused on previous studies and investigations toward the performance enhancement of aerodynamic surfaces with leading-edge (LE) tubercles. The implementation of tubercles has been biologically imitated from humpback whale (HW) flippers. Particularly, aerodynamicists are much interested in this bioinspired technology because of the exclusive maneuvering and flow control potential of HW flippers. LE protuberances are considered as a passive flow control method to improve the aerodynamic performance in various applications like aviation, marine, and wind energy. The aerodynamic and hydrodynamic performance variations caused by specific tubercles amplitude and wavelength are also compared through numerical and wind tunnel testing. The prospective utilization of tubercles on boundary layer flow control is measured with regard to conventional and swept-back wing designs. Flow control mechanisms of tubercles are outlined with several interesting facts in addition to the outcomes of various bioinspired aerodynamic investigations in the recent years.


2003 ◽  
Author(s):  
M. Bar-Eli ◽  
O. Lowengart ◽  
J. Goldberg ◽  
S. Epstein ◽  
R. D. Fosbury

2020 ◽  
Vol 91 (3) ◽  
pp. 30201
Author(s):  
Hang Yu ◽  
Jianlin Zhou ◽  
Yuanyuan Hao ◽  
Yao Ni

Organic thin film transistors (OTFTs) based on dioctylbenzothienobenzothiophene (C8BTBT) and copper (Cu) electrodes were fabricated. For improving the electrical performance of the original devices, the different modifications were attempted to insert in three different positions including semiconductor/electrode interface, semiconductor bulk inside and semiconductor/insulator interface. In detail, 4,4′,4′′-tris[3-methylpheny(phenyl)amino] triphenylamine (m-MTDATA) was applied between C8BTBTand Cu electrodes as hole injection layer (HIL). Moreover, the fluorinated copper phthalo-cyanine (F16CuPc) was inserted in C8BTBT/SiO2 interface to form F16CuPc/C8BTBT heterojunction or C8BTBT bulk to form C8BTBT/F16CuPc/C8BTBT sandwich configuration. Our experiment shows that, the sandwich structured OTFTs have a significant performance enhancement when appropriate thickness modification is chosen, comparing with original C8BTBT devices. Then, even the low work function metal Cu was applied, a normal p-type operate-mode C8BTBT-OTFT with mobility as high as 2.56 cm2/Vs has been fabricated.


2019 ◽  
Vol 13 (3) ◽  
pp. 5242-5258
Author(s):  
R. Ravivarman ◽  
K. Palaniradja ◽  
R. Prabhu Sekar

As lined, higher transmission ratio drives system will have uneven stresses in the root region of the pinion and wheel. To enrich this agility of uneven stresses in normal-contact ratio (NCR) gearing system, an enhanced system is desirable to be industrialized. To attain this objective, it is proposed to put on the idea of modifying the correction factor in such a manner that the bending strength of the gearing system is improved. In this work, the correction factor is modified in such a way that the stress in the root region is equalized between the pinion and wheel. This equalization of stresses is carried out by providing a correction factor in three circumstances: in pinion; wheel and both the pinion and the wheel. Henceforth performances of this S+, S0 and S- drives are evaluated in finite element analysis (FEA) and compared for balanced root stresses in parallel shaft spur gearing systems. It is seen that the outcomes gained from the modified drive have enhanced performance than the standard drive.


2011 ◽  
Vol 4 (4) ◽  
pp. 377-386
Author(s):  
B.Palpandi B.Palpandi ◽  
◽  
Dr. G.Geetharamani Dr. G.Geetharamani ◽  
J.Arun Pandian

Sign in / Sign up

Export Citation Format

Share Document