scholarly journals Endotoxin treatment of pregnant rats affects sexual behavior of the male offspring

1991 ◽  
Vol 49 (3) ◽  
pp. 647-649 ◽  
Author(s):  
S. Wijkstra ◽  
N. Valkhof ◽  
J.M. Koolhaas ◽  
G.A. Schuiling
2019 ◽  
Vol 38 (4) ◽  
pp. 312-318 ◽  
Author(s):  
Fernanda Gumilar ◽  
Cristina Bras ◽  
Patricia Aggio ◽  
Sergio Domínguez ◽  
Mariana Bartos ◽  
...  

Pregnant rats were treated with 0.3 and 0.6 mg cadmium (CdCl2)/kg injected subcutaneously on a daily basis from gestational day 7 to day 15 (organogenesis period). One control group was not injected and other received saline. The 45-day-old offspring were tested in a step-down inhibitory avoidance to evaluate short-term and long-term memory and in a radial maze for the study of spatial memory. These studies showed that gestational exposure to 0.6 mg Cd/kg produced in the male offspring a significant impairment in the retention of long-term memory evaluated 24 hours after training in the step-down inhibitory avoidance. The radial maze also demonstrated that the male offspring prenatally exposed to 0.6 mg Cd presented a significant deficit in the retention of spatial memory evaluated 42 days after training. These results demonstrate that the exposure to Cd during organogenesis may affect the retention of some types of memory.


2014 ◽  
Vol 31 (5) ◽  
pp. 555-560 ◽  
Author(s):  
Zeng-Tao Wei ◽  
Xi-Lan Lu ◽  
Gang Zhang ◽  
Jing Yu ◽  
Hua Li ◽  
...  

2015 ◽  
Vol 115 (4) ◽  
pp. 594-604 ◽  
Author(s):  
Clint Gray ◽  
Sheila M. Gardiner ◽  
Matthew Elmes ◽  
David S. Gardner

AbstractThe Western diet is typically high in salt and fructose, which have pressor activity. Maternal diet can affect offspring blood pressure, but the extent to which maternal intake of excess salt and fructose may influence cardiovascular function of the offspring is unknown. We sought to determine the effect of moderate maternal dietary intake of salt and/or fructose on resting and stimulated cardiovascular function of the adult male and female offspring. Pregnant rats were fed purified diets (±4 % salt) and water (±10 % fructose) before and during gestation and through lactation. Male and female offspring were weaned onto standard laboratory chow. From 9 to 14 weeks of age, cardiovascular parameters (basal, circadian and stimulated) were assessed continuously by radiotelemetry. Maternal salt intake rendered opposite-sex siblings with a 25-mmHg difference in blood pressure as adults; male offspring were hypertensive (15 mmHg mean arterial pressure (MAP)) and female offspring were hypotensive (10 mmHg MAP) above and below controls, respectively. Sex differences were unrelated to endothelial nitric oxide activity in vivo, but isolation-induced anxiety revealed a significantly steeper coupling between blood pressure and heart rate in salt-exposed male offspring but not in female offspring. MAP of all offspring was refractory to salt loading but sensitive to subsequent dietary fructose, an effect exacerbated in female offspring from fructose-fed dams. Circadian analyses of pressure in all offspring revealed higher mean set-point for heart rate and relative non-dipping of nocturnal pressure. In conclusion, increased salt and fructose in the maternal diet has lasting effects on offspring cardiovascular function that is sex-dependent and related to the offspring’s stress–response axis.


1987 ◽  
Vol 39 (4) ◽  
pp. 477-481 ◽  
Author(s):  
R. Arevalo ◽  
R. Castro ◽  
M.D. Palarea ◽  
M. Rodriguez
Keyword(s):  

Author(s):  
Alexander Reznikov ◽  
Olha Sachynska ◽  
Аnna Lymareva ◽  
Lyubov Polyakova

Aim: To study the long-term effects of exposure of pregnant Wistar rats to low dose of bisphenol A (BPA) by measuring to the level of steroid hormones and sexual behavior of adult male offspring of the first generation. Material and research methods: BPA as part of the Dorfman gel was gavaged during the last week of pregnancy, when androgen-dependent sexual brain differentiation occurs, in a daily dose of 25 mcg/kg b.w. (threshold teratogenic dose). Male sexual behavior was evaluated by proceptive reactions, the duration of latent and refractory periods, the number of mounts, intromissions and ejaculations in the presence of a receptive female. Female sexual behavior was assessed by lordosis reactions of orchidectomized and activated by the introduction of estradiol and progesterone males in the presence of a normal male. A neuromorphological analysis of the sex-dimorphic area of the brain, the medial preoptic nucleus of the hypothalamus, was performed by histological examination and karyometry of neurons. Results: Prenatally administered BPA caused a very slight increase in the anogenital distance in newborn animals and did not affect the terms of puberty. The levels of testosterone and corticosterone in the blood plasma of males of 6 months of age did not differ from the control indices. At 10 months of age, all experimental males showed sharply weakened sexual motivation for mating with females, and in 4 from 5 animals, copulative components of sexual behavior were absent. There was no ejaculations in the 5th male as well, while numbers of the mounts without intromissions and ones with intromissions significantly reduced. In the BPA group, all descendants showed active female behavior in the presence of a normal male, which manifested in lordosis reactions and a high lordosis index. According to the histological study of medial preoptic nucleus, the activity of neurocytes in the male offspring of BPA-exposed females was significantly reduced, and their nuclei volume distribution was some different from the control. Conclusions: The data obtained indicate epigenetic disorders of the sexual brain differentiation program due to the prenatal exposure to BPA in dose that does not cause significant teratogenic effects. This should be taken into account when evaluating the potential hazard of BPA for reproductive health. Key words: bisphenol A, prenatal effect, male rats, sexual behavior, corticosterone, testosterone.


Author(s):  
Lidia E Martínez Gascón ◽  
Maria C. Ortiz ◽  
Maria Galindo ◽  
Jose Miguel Sanchez ◽  
Natalia Sancho-Rodriguez ◽  
...  

Intrauterine programming of cardiovascular and renal function occurs in diabetes because of the adverse maternal environment. Heme oxygenase 1 (HO-1) and -2 (HO-2) exert vasodilatory, and antioxidant actions, particularly in conditions of elevated HO-1 expression, or deficient nitric oxide levels. We evaluated whether the activity of the heme-HO system is differentially regulated by oxidative stress in the female offspring of diabetic mothers, contributing to the improved cardiovascular function compared to male. Diabetes was induced in pregnant rats by a single dose of Streptozotocin (STZ, 50mg/kg i.p) in late gestation. Three months old male offspring from diabetic mothers (MOD) exhibited higher blood pressure values (BP), higher renal vascular resistance (RVR), worse endothelium -dependent response to Acetylcholine and an increased constrictor response to Phenylephrine, compared to those in aged matched female (FOD), which were abolished by chronic Tempol (1mM) treatment. In anesthetized animals, Stannous mesoporphyrin (SnMP; 40 µmol/kg i.v.) administration, to inhibit HO activity, increased RVR in FOD and reduced glomerular filtration rate in MOD, without altering these parameters in control animals. Compared to MOD, FOD showed lower nitrotirosyne levels, and higher HO-1 protein expression in renal homogenates. Indeed, chronic treatment with Tempol to MOD, prevented elevations in nitrotyrosine levels, and the acute renal hemodynamics response to SnMP. Then, maternal diabetes results in sex specific hypertension, and renal alterations associated to oxidative stress, mainly in adult male offspring, which are reduced in the female offspring, by elevation in HO-1 expression and lower oxidative stress levels.


2011 ◽  
Vol 300 (5) ◽  
pp. R1175-R1184 ◽  
Author(s):  
Alireza Jahan-mihan ◽  
Chris E. Smith ◽  
G. Harvey Anderson

We hypothesized that protein source in the nutritionally adequate AIN-93G diets fed during gestation, lactation, and weaning influences food intake (FI) regulation in male offspring of Wistar rats. Pregnant rats were fed the recommended casein-based (C) or soy protein-based (S) diet during gestation ( experiment 1) or during gestation and lactation ( experiment 2). Pups (n = 12 per group) weaned to C or S diets were followed for 9 wk ( experiment 1) or 14 wk ( experiment 2). At termination, body weight was 5.4% and 9.4% higher, respectively, in offspring of dams fed the S diet. Altered FI regulation was shown by failure of devazepide (a CCK-A receptor blocker) to block FI reduction after protein preloads in offspring of S diet-fed dams, whereas it had a strong effect on offspring of C diet-fed dams ( P < 0.005). Similarly, naloxone (an opioid receptor blocker) blocked FI reduction more after casein than after soy protein preloads ( P < 0.01). In experiment 2, offspring of dams fed the S diet had higher hypothalamic gene expression of agouti related protein at weaning ( P < 0.05), and higher FI was found throughout postweaning ( P < 0.0001). FI reduction after protein preloads at week 7 and after glucose preloads at week 13 was greater in offspring of C diet-fed dams ( P < 0.05). Plasma insulin at weaning and insulin, ghrelin, and glucagon-like peptide-1 at week 15 were higher in offspring of S diet-fed dams (all P < 0.05). In conclusion, nutritionally complete C and S diets consumed during gestation and lactation differ in their effects on body weight and FI regulation in the offspring. Extending the diet from gestation alone to throughout gestation and lactation exaggerated the adverse effects of the S diet. However, the diet consumed postweaning had little effect on the outcome.


Sign in / Sign up

Export Citation Format

Share Document