Sucrose transport at the tonoplast

1973 ◽  
Vol 12 (6) ◽  
pp. 1211-1219 ◽  
Author(s):  
Thomas E. Humphreys
Keyword(s):  
1991 ◽  
Vol 83 (3) ◽  
pp. 404-410 ◽  
Author(s):  
Hans Peter Getz ◽  
Margaret Thom ◽  
Andrew Maretzki

1979 ◽  
Vol 43 (5) ◽  
pp. 559-569 ◽  
Author(s):  
V. CAMERON-MILLS ◽  
C. M. DUFFUS
Keyword(s):  

2000 ◽  
Vol 21 (5) ◽  
pp. 455-467 ◽  
Author(s):  
Winfriede Weschke ◽  
Reinhard Panitz ◽  
Norbert Sauer ◽  
Qing Wang ◽  
Birgit Neubohn ◽  
...  

2002 ◽  
Vol 29 (6) ◽  
pp. 717 ◽  
Author(s):  
Shelley R. McRae ◽  
John T. Christopher ◽  
J. Andrew C. Smith ◽  
Joseph A. M. Holtum

This paper originates from a presentation at the IIIrd International Congress on Crassulacean Acid Metabolism, Cape Tribulation, Queensland, Australia, August 2001. In Ananas comosus L. (Merr.) (pineapple), a widely cultivated bromeliad that exhibits crassulacean acid metabolism (CAM), much of the carbohydrate synthesized during the daytime appears to accumulate as soluble sugars in the vacuole. To investigate the mechanism of sugar transport into the vacuole, microsomal extracts were prepared from deacidifying leaves harvested during Phase III of the CAM cycle. The vesicle preparations exhibited features expected for a fraction highly enriched in vacuolar membranes (tonoplast), i.e. the ATPase activity of 16 ±�2�nkat mg-1 protein was inhibited 96% by 50 mm KNO3, an inhibitor of vacuolar ATPases, and was only 7% inhibited by 100μm NaN3 plus 100μm Na3VO4, inhibitors of mitochondrial and plasma membrane ATPases, respectively. Further, the microsomal ATPase activity showed a pH optimum between 7.0 and 8.0, typical of a vacuolar ATPase. When presented with Mg-ATP, vesicles established H+ gradients that could be maintained for at least 25 min. The vesicles were able to take up [14C]sucrose from an external medium. Sucrose uptake exhibited saturable kinetics with an apparent Km of 50 m sucrose and apparent Vmax of 171 ± 5 pkat mg-1 protein. Sucrose uptake was not dependent upon, nor stimulated by, Mg-ATP, suggesting that the mechanism of sucrose transport into the vacuole in A. comosus does not involve H+-coupled cotransport. However, the initial rates of sucrose uptake from the external medium were stimulated when vesicles were preloaded with sucrose. This trans-stimulation is consistent with characteristics expected for a sucrose uniporter capable of operating in an exchange mode. It is proposed that the accumulation of glucose and fructose in leaf vacuoles of Ananas during the light period involves at least two steps - transport of sucrose into the vacuole by a mechanism exhibiting characteristics of a sucrose uniporter, followed by cleavage of sucrose by a vacuolar acid invertase to form glucose and fructose.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yoon Kim ◽  
Sun-Ho Kim ◽  
Dong-Min Shin ◽  
Soo-Hwan Kim

ATBS1-INTERACTING FACTOR 2 (AIF2) is a non-DNA-binding basic-helix-loop-helix (bHLH) transcription factor. Here, we demonstrate that AIF2 negatively modulates brassinosteroid (BR)-induced, BRASSINAZOLE RESISTANT 1 (BZR1)-mediated pollen and seed formation. AIF2-overexpressing Arabidopsis plants (AIF2ox) showed defective pollen grains and seed production while two AIF2 knockout mutants, aif2-1 and aif2-1/aif4-1, displayed opposite phenotypes. Genes encoding BZR1-regulated positive factors of seed size determination (SHB1, IKU1, MINI3) were suppressed in AIF2ox and genes for negative factors (AP2 and ARF2) were enhanced. Surprisingly, BZR1-regulated pollen genes such as SPL, MS1, and TDF1 were aberrantly up-regulated in AIF2ox plants. This stage-independent abnormal expression may lead to a retarded and defective progression of microsporogenesis, producing abnormal tetrad microspores and pollen grains with less-effective pollen tube germination. Auxin plays important roles in proper development of flower and seeds: genes for auxin biosynthesis such as TCPs and YUCCAs as well as for positive auxin signalling such as ARFs were suppressed in AIF2ox flowers. Moreover, lipid biosynthesis- and sucrose transport-related genes were repressed, resulting in impaired starch accumulation. Contrarily, sucrose and BR repressed ectopic accumulation of AIF2, thereby increasing silique length and the number of seeds. Taken together, we propose that AIF2 is negatively involved in pollen development and seed formation, and that sucrose- and BR-induced repression of AIF2 positively promotes pollen production and seed formation in Arabidopsis.


Plant Biology ◽  
2016 ◽  
Vol 18 (6) ◽  
pp. 1031-1037 ◽  
Author(s):  
N. Farhat ◽  
A. Smaoui ◽  
L. Maurousset ◽  
B. Porcheron ◽  
R. Lemoine ◽  
...  

2012 ◽  
Vol 79 (2) ◽  
pp. 478-487 ◽  
Author(s):  
Suriana Sabri ◽  
Lars K. Nielsen ◽  
Claudia E. Vickers

ABSTRACTSucrose is an industrially important carbon source for microbial fermentation. Sucrose utilization inEscherichia coli, however, is poorly understood, and most industrial strains cannot utilize sucrose. The roles of the chromosomally encoded sucrose catabolism (csc) genes inE. coliW were examined by knockout and overexpression experiments. At low sucrose concentrations, thecscgenes are repressed and cells cannot grow. Removal of either the repressor protein (cscR) or the fructokinase (cscK) gene facilitated derepression. Furthermore, combinatorial knockout ofcscRandcscKconferred an improved growth rate on low sucrose. The invertase (cscA) and sucrose transporter (cscB) genes are essential for sucrose catabolism inE. coliW, demonstrating that no other genes can provide sucrose transport or inversion activities. However,cscKis not essential for sucrose utilization. Fructose is excreted into the medium by thecscK-knockout strain in the presence of high sucrose, whereas at low sucrose (when carbon availability is limiting), fructose is utilized by the cell. Overexpression ofcscA,cscAK, orcscABcould complement the WΔcscRKABknockout mutant or confer growth on a K-12 strain which could not naturally utilize sucrose. However, phenotypic stability and relatively good growth rates were observed in the K-12 strain only when overexpressingcscAB, and full growth rate complementation in WΔcscRKABalso requiredcscAB. Our understanding of sucrose utilization can be used to improveE. coliW and engineer sucrose utilization in strains which do not naturally utilize sucrose, allowing substitution of sucrose for other, less desirable carbon sources in industrial fermentations.


Author(s):  
John M. Ward ◽  
Christina Kühn ◽  
Mechthild Tegeder ◽  
Wolf B. Frommer

Author(s):  
Jyotirmaya Mathan ◽  
Anuradha Singh ◽  
Aashish Ranjan

Abstract The source-sink relationship is key to overall crop performance. Detailed understanding of the factors that determine source-sink dynamics is imperative for the balance of biomass and grain yield in crop plants. We investigated the differences in the source-sink relationship between a cultivated rice Oryza sativa cv. Nipponbare and a wild rice Oryza australiensis that show striking differences in biomass and grain yield. Oryza australiensis, accumulating higher biomass, not only showed higher photosynthesis per unit leaf area but also exported more sucrose from leaves than Nipponbare. However, grain features and sugar levels suggested limited sucrose mobilization to the grains in the wild rice due to vasculature and sucrose transporter functions. Low cell wall invertase activity and high sucrose synthase cleavage activity followed by higher expression of cellulose synthase genes in Oryza australiensis stem utilized photosynthates preferentially for the synthesis of structural carbohydrates, resulting in high biomass. In contrast, the source-sink relationship favored high grain yield in Nipponbare via accumulation of transitory starch in the stem, due to higher expression of starch biosynthetic genes, which is mobilized to panicles at the grain filling stage. Thus, vascular features, sucrose transport, and functions of sugar metabolic enzymes explained the differences in the source-sink relationship between Nipponbare and Oryza australiensis.


Sign in / Sign up

Export Citation Format

Share Document