A new strategy applied to the synthesis of an α-helical bicyclic peptide constrained by two overlapping i, i+7 side-chain bridges of novel design

1996 ◽  
Vol 37 (11) ◽  
pp. 1731-1734 ◽  
Author(s):  
Chongxi Yu ◽  
John W. Taylor
Keyword(s):  
2019 ◽  
Author(s):  
Huaimin Wang ◽  
Zhaoqianqi Feng ◽  
Weiyi Tan ◽  
Bing Xu

<p>Selectively targeting cell nucleolus remains a challenge. Here we report the first case that D-peptides form membraneless molecular condensates with RNA for targeting cell nucleolus. A D-peptide derivative, enriched with lysine and hydrophobic residues, self-assembles to form nanoparticles, which enter cells through clathrin dependent endocytosis and mainly accumulate at cell nucleolus. Structural analogue of the D-peptide reveals that particle morphology of the assemblies, which depends on the side chain modification, favors the cellular uptake. Contrasting to those of the D-peptide, the assemblies of the corresponding L-enantiomer largely localize in cell lysosomes. Preliminary mechanism study suggests that the D-peptide nanoparticles interact with RNA to form membraneless condensates in the nucleolus, which further induces DNA damage and results in cell death. This work illustrates a new strategy for rationally designing supramolecular assemblies of D-peptides for targeting subcellular organelles.</p>


2019 ◽  
Vol 86 (3) ◽  
Author(s):  
Yin Huang ◽  
Zhuangzhuang Mu ◽  
Peng Feng ◽  
Jianghong Yuan

Inorganic stretchable electronics based on the island-bridge layout have attracted great attention in recent years due to their excellent electrical performance under the extreme condition of large deformations. During the mechanics design of interconnects in such devices, the major task is not only to maximize the elastic stretchability of device but also to smoothen the whole deformation process of interconnects. In this work, a novel design strategy is proposed for free-standing fractal serpentine interconnects to improve their elastic performance comprehensively without reducing the areal coverage of functional/active components of device. By modifying the classical design slightly, the new strategy can achieve a larger elastic stretchability, a smaller maximum out-of-plane displacement, and most strikingly, a smoother post-buckling deformation. This study will provide helpful guidance to the mechanics design of stretchable electronics with free-standing interconnects.


2015 ◽  
Vol 26 (8) ◽  
pp. 946-950 ◽  
Author(s):  
Jian Lu ◽  
Xiao-Bo Tian ◽  
Wei Huang

2019 ◽  
Author(s):  
Huaimin Wang ◽  
Zhaoqianqi Feng ◽  
Weiyi Tan ◽  
Bing Xu

<p>Selectively targeting cell nucleolus remains a challenge. Here we report the first case that D-peptides form membraneless molecular condensates with RNA for targeting cell nucleolus. A D-peptide derivative, enriched with lysine and hydrophobic residues, self-assembles to form nanoparticles, which enter cells through clathrin dependent endocytosis and mainly accumulate at cell nucleolus. Structural analogue of the D-peptide reveals that particle morphology of the assemblies, which depends on the side chain modification, favors the cellular uptake. Contrasting to those of the D-peptide, the assemblies of the corresponding L-enantiomer largely localize in cell lysosomes. Preliminary mechanism study suggests that the D-peptide nanoparticles interact with RNA to form membraneless condensates in the nucleolus, which further induces DNA damage and results in cell death. This work illustrates a new strategy for rationally designing supramolecular assemblies of D-peptides for targeting subcellular organelles.</p>


Micromachines ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 640 ◽  
Author(s):  
Jun-Yi Chen ◽  
Xu-Dong Xia ◽  
Jicheng Zhang

A novel perylene diimide (PDI) based acceptor P-PDI was synthesized by attaching a phenyl bridge to two octyloxy side chains. With two large volume side chains, the planarity of P-PDI was significantly reduced, leading to weak nano-aggregation of the PDI groups between the different acceptor molecules. Differential scanning calorimetry (DSC) experiments also revealed that P-PDI was amorphous, and demonstrating the aggregation of P-PDI was successfully suppressed. When blended with PTB7-Th to fabricate a polymer solar cell, a power conversation efficiency (PCE) of 2.21% was achieved, demonstrating that a conjugated bridge with a big volume side chain could significantly reduce the nano-scale aggregation of PDI based acceptor materials, which provides a new strategy to synthesize high efficiency acceptors based on PDI.


2017 ◽  
Vol 13 ◽  
pp. 1430-1438 ◽  
Author(s):  
Marcel Reimann ◽  
Louis P Sandjo ◽  
Luis Antelo ◽  
Eckhard Thines ◽  
Isabella Siepe ◽  
...  

Two hitherto unknown fusaricidins were obtained from fermentation broths of three Paenibacillus strains. After structure elucidation based on tandem mass spectrometry and NMR spectroscopy, fusaricidin E was synthesized to confirm the structure and the suggested stereochemistry. The synthesis was based on a new strategy which includes an efficient access to the 15-guanidino-3-hydroxypentadecanoyl (GHPD) side chain from erucamide.


2004 ◽  
Vol 48 (7) ◽  
pp. 2502-2509 ◽  
Author(s):  
Herbert Rodrigues Goulart ◽  
Emília A. Kimura ◽  
Valnice J. Peres ◽  
Alicia S. Couto ◽  
Fulgencio A. Aquino Duarte ◽  
...  

ABSTRACT Development of new drugs is one of the strategies for malaria control. The biosynthesis of several isoprenoids in Plasmodium falciparum was recently described. Interestingly, some intermediates and final products biosynthesized by this pathway in mammals differ from those biosynthesized in P. falciparum. These facts prompted us to evaluate various terpenes, molecules with a similar chemical structure to the intermediates of the isoprenoids pathway, as potential antimalarial drugs. Different terpenes and S-farnesylthiosalicylic acid were tested on cultures of the intraerythrocytic stages of P. falciparum, and the 50% inhibitory concentrations for each one were found: farnesol, 64 μM; nerolidol, 760 nM; limonene, 1.22 mM; linalool, 0.28 mM; and S-farnesylthiosalicylic acid, 14 μM. All the terpenes tested inhibited dolichol biosynthesis in the trophozoite and schizont stages when [1-(n)-3H]farnesyl pyrophosphate triammonium salt ([3H]FPP) was used as precursor. Farnesol, nerolidol, and linalool showed stronger inhibitory activity on the biosynthesis of the isoprenic side chain of the benzoquinone ring of ubiquinones in the schizont stage. Treatment of schizont stages with S-farnesylthiosalicylic acid led to a decrease in intensity of the band corresponding a p21 ras protein. The inhibitory effect of terpenes and S-farnesylthiosalicylic acid on the biosynthesis of both dolichol and the isoprenic side chain of ubiquinones and the isoprenylation of proteins in the intraerythrocytic stages of P. falciparum appears to be specific, because overall protein biosynthesis was not affected. Combinations of some terpenes or S-farnesylthiosalicylic acid tested in this work with other antimalarial drugs, like fosmidomycin, could be a new strategy for the treatment of malaria.


2003 ◽  
Vol 49 (10) ◽  
pp. 613-624 ◽  
Author(s):  
Nick D Allan ◽  
Cora Kooi ◽  
Pamela A Sokol ◽  
Terry J Beveridge

Like many other Gram-negative bacteria, Burkholderia cepacia naturally releases membrane vesicles (n-MVs) during normal growth. Through filtration and differential centrifugation, n-MVs from clinical isolates of the IIIa and V genomovars were isolated and their characteristics compared. Electron microscopy revealed that they were spherical, 30–220 nm in diameter, and bilayered. Virulence factors thought to play a role in pathogenicity (e.g., lipase, phospholipase-N, and protease, including a metalloprotease) were found associated with n-MVs, while peptidoglycan zymogram analysis also revealed 26, 28, 36, and 66 kDa peptidoglycan-degrading enzymes. n-MVs were often contaminated with flagella and pili when isolated by traditional methods, and a new strategy using a linear isopycnic sucrose gradient was utilized. For better characterization, this was applied to a representative genomovar IIIa strain (C5424) and showed that n-MVs consisted of a subset of specific outer membrane and periplasmic proteins as well as lipopoly saccharide possessing only a putative minor O-side chain polymer. This finding suggests that certain components are selected by B. cepacia during n-MV formation, and since some are putative virulence factors, this property could help deliver the factors to tissue, thereby aiding infection.Key words: membrane vesicles, virulence factors, Burkholderia cepacia, genomovar.


Haemophilia ◽  
2001 ◽  
Vol 7 (4) ◽  
pp. 416-418 ◽  
Author(s):  
M. Acquila ◽  
F. Bottini ◽  
A. Valetto ◽  
D. Caprino ◽  
P. G. Mori ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document