Mutants of an influenza a reassortant which are cold-sensitive (cs) as well as temperature-sensitive (ts): On the role of the neuraminidase activity for influenza virus infection

Virology ◽  
1987 ◽  
Vol 156 (1) ◽  
pp. 101-106 ◽  
Author(s):  
Astrid Breuning ◽  
Karin Müller ◽  
Christoph Scholtissek
2010 ◽  
Vol 84 (15) ◽  
pp. 7603-7612 ◽  
Author(s):  
Susana de Lucas ◽  
Joan Peredo ◽  
Rosa María Marión ◽  
Carmen Sánchez ◽  
Juan Ortín

ABSTRACT The influenza A virus genome consists of 8 negative-stranded RNA segments. NS1 is a nonstructural protein that participates in different steps of the virus infectious cycle, including transcription, replication, and morphogenesis, and acts as a virulence factor. Human Staufen1 (hStau1), a protein involved in the transport and regulated translation of cellular mRNAs, was previously identified as a NS1-interacting factor. To investigate the possible role of hStau1 in the influenza virus infection, we characterized the composition of hStau1-containing granules isolated from virus-infected cells. Viral NS1 protein and ribonucleoproteins (RNPs) were identified in these complexes by Western blotting, and viral mRNAs and viral RNAs (vRNAs) were detected by reverse transcription (RT)-PCR. Also, colocalization of hStau1 with NS1, nucleoprotein (NP), and PA in the cytosol of virus-infected cells was shown by immunofluorescence. To analyze the role of hStau1 in the infection, we downregulated its expression by gene silencing. Human HEK293T cells or A549 cells were silenced using either short hairpin RNAs (shRNAs) or small interfering RNAs (siRNAs) targeting four independent sites in the hStau1 mRNA. The yield of influenza virus was reduced 5 to 10 times in the various hStau1-silenced cells compared to that in control silenced cells. The expression levels of viral proteins and their nucleocytoplasmic localization were not affected upon hStau1 silencing, but virus particle production, as determined by purification of virions from supernatants, was reduced. These results indicate a role for hStau1 in late events of the influenza virus infection, possibly during virus morphogenesis.


2008 ◽  
Vol 82 (22) ◽  
pp. 11461-11466 ◽  
Author(s):  
Karoline Droebner ◽  
Sarah Julia Reiling ◽  
Oliver Planz

ABSTRACT During H5N1 influenza virus infection, proinflammatory cytokines are markedly elevated in the lungs of infected hosts. The significance of this dysregulated cytokine response in H5N1-mediated pathogenesis remains to be determined. To investigate the influence of hypercytokinemia, or “cytokine storm,” a transgenic mouse technology was used. The classical NF-κB pathway regulates the induction of most proinflammatory cytokines. Deletion of the p50 subunit leads to a markedly reduced expression of the NF-κB-regulated cytokines and chemokines. Here we show that H5N1 influenza virus infection of this transgenic mouse model resulted in a lack of hypercytokinemia but not in altered pathogenesis.


2000 ◽  
Vol 74 (9) ◽  
pp. 3996-4003 ◽  
Author(s):  
Graeme E. Price ◽  
Anna Gaszewska-Mastarlarz ◽  
Demetrius Moskophidis

ABSTRACT During influenza virus infection innate and adaptive immune defenses are activated to eliminate the virus and thereby bring about recovery from illness. Both arms of the adaptive immune system, antibody neutralization of free virus and termination of intracellular virus replication by antiviral cytotoxic T cells (CTLs), play pivotal roles in virus elimination and protection from disease. Innate cytokine responses, such as alpha/beta interferon (IFN-α/β) or IFN-γ, can have roles in determining the rate of virus replication in the initial stages of infection and in shaping the initial inflammatory and downstream adaptive immune responses. The effect of these cytokines on the replication of pneumotropic influenza A virus in the respiratory tract and in the regulation of adaptive antiviral immunity was examined after intranasal infection of mice with null mutations in receptors for IFN-α/β, IFN-γ, and both IFNs. Virus titers in the lungs of mice unable to respond to IFNs were not significantly different from congenic controls for both primary and secondary infection. Likewise the mice were comparably susceptible to X31 (H3N2) influenza virus infection. No significant disruption to the development of normal antiviral CTL or antibody responses was observed. In contrast, mice bearing the disrupted IFN-α/β receptor exhibited accelerated kinetics and significantly higher levels of neutralizing antibody activity during primary or secondary heterosubtypic influenza virus infection. Thus, these observations reveal no significant contribution for IFN-controlled pathways in shaping acute or memory T-cell responses to pneumotropic influenza virus infection but do indicate some role for IFN-α/β in the regulation of antibody responses. Recognizing the pivotal role of CTLs and antibody in virus clearance, it is reasonable to assume a redundancy in IFN-mediated antiviral effects in pulmonary influenza. However, IFN-α/β seems to be a valid factor in determining tissue tropism and replicative rates of highly virulent influenza virus strains as reported previously by others, and this aspect is discussed here.


2021 ◽  
Author(s):  
Ao Zhou ◽  
Xia Dong ◽  
Bin Tang

Abstract BackgroundTNK2/ACK1, a non-receptor tyrosine kinase, plays critical roles in signalling transduces and trafficking. Our previous genome-wide CRISPR/CAS9 knockout screen revealed that mutant of TNK2 produced more restrict to influenza virus infection. In this study, we aim to illustrate the role of TNK2 for influenza A virus (IAV) replication in human cells.ResultsCRISPR/Cas9-mediated mutant of TNK2 resulted in a significant reduction in viral proteins expression and viral titres for multiple influenza strains, and furthermore, a decrease of nuclear import of IAV in the infected TNK2 mutant cells was observed in 3h post-infection. Interestingly, TNK2 mutation enhanced the colocalization of LC3 with autophagic receptor p62 and led to the attenuation of influenza virus-caused accumulation of autophagosomes in TNK2 mutant cells. Further, confocal microscopy visualization result showed that influenza viral matrix 2 (M2) was colocalized with Lamp1 in the infected TNK2 mutant cells in early infection, while almost no colocalization between M2 and Lamp1 was observed in IAV-infected wild-type cells. Moreover, TNK2 depletion also affected the trafficking of early endosome and the movement of influenza viral NP and M2.ConclusionsOur results identified TNK2 as a critical host factor for influenza viral M2 protein trafficking, suggesting that TNK2 will be an attractive target for the development of antivirals therapeutics.


2020 ◽  
Vol 15 (7) ◽  
pp. 441-453
Author(s):  
Ana Vazquez-Pagan ◽  
Rebekah Honce ◽  
Stacey Schultz-Cherry

Pregnant women are among the individuals at the highest risk for severe influenza virus infection. Infection of the mother during pregnancy increases the probability of adverse fetal outcomes such as small for gestational age, preterm birth and fetal death. Animal models of syngeneic and allogeneic mating can recapitulate the increased disease severity observed in pregnant women and are used to define the mechanism(s) of that increased severity. This review focuses on influenza A virus pathogenesis, the unique immunological landscape during pregnancy, the impact of maternal influenza virus infection on the fetus and the immune responses at the maternal–fetal interface. Finally, we summarize the importance of immunization and antiviral treatment in this population and highlight issues that warrant further investigation.


2010 ◽  
Vol 65 (5-6) ◽  
pp. 419-428 ◽  
Author(s):  
Julia Serkedjieva ◽  
Tsvetanka Stefanova ◽  
Ekaterina Krumova

The combined protective effect of a polyphenol-rich extract, isolated from Geranium sanguineum L. (PC), and a novel naturally glycosylated Cu/Zn-containing superoxide dismutase, produced from the fungal strain Humicula lutea 103 (HL-SOD), in the experimental influenza A virus infection (EIVI) in mice, induced with the virus A/Aichi/2/68 (H3N2), was investigated. The combined application of HL-SOD and PC in doses, which by themselves do not defend significantly mice in EIVI, resulted in a synergistically increased protection, determined on the basis of protective indices and amelioration of lung injury. Lung weights and consolidation as well as infectious lung virus titers were all decreased significantly parallel to the reduction of the mortality rates; lung indices were raised. The excessive production of reactive oxygen species (ROS) by alveolar macrophages (aMØ) as well as the elevated levels of the lung antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), induced by EIVI, were brought to normal. For comparative reasons the combined protective effect of PC and vitamin C was investigated. The obtained results support the combined use of antioxidants for the treatment of influenza virus infection and in general indicate the beneficial protective role of combinations of viral inhibitors of natural origin with diverse modes of action.


Author(s):  
Pınar YAZICI ÖZKAYA ◽  
Eşe Eda TURANLI ◽  
Hamdi METİN ◽  
Ayça Aydın UYSAL ◽  
Candan ÇİÇEK ◽  
...  

2019 ◽  
Author(s):  
Adam D. Kenney ◽  
Temet M. McMichael ◽  
Alexander Imas ◽  
Nicholas M. Chesarino ◽  
Lizhi Zhang ◽  
...  

AbstractInfluenza virus primarily targets the lungs, but dissemination and damage to heart tissue is also known to occur in severe infections. Despite this knowledge, influenza virus-induced cardiac pathogenesis and its underlying mechanisms have been difficult to study due to a lack of small animal models. In humans, polymorphisms in the gene encoding interferon-induced transmembrane protein 3 (IFITM3), an antiviral restriction factor, are associated with susceptibility to severe influenza, but whether IFITM3 deficiencies contribute to other aspects of pathogenesis, including cardiac dysfunction, is unknown. We now show that IFITM3 deficiency in a newly generated knockout (KO) mouse model exacerbates illness and mortality following influenza A virus infection. Enhanced pathogenesis correlated with increased replication of virus in the lungs, spleens, and hearts of KO mice relative to wildtype (WT) mice. IFITM3 KO mice exhibited normal cardiac function at baseline, but developed severely aberrant electrical activity upon infection, including decreased heart rate and irregular, arrhythmic RR (interbeat) intervals. In contrast, WT mice exhibited a mild decrease in heart rate without irregularity of RR intervals. Heightened cardiac virus titers and electrical dysfunction in KO animals was accompanied by increased activation of fibrotic pathways and fibrotic lesions in the heart. Our findings reveal an essential role for IFITM3 in controlling influenza virus replication and pathogenesis in heart tissue and establish IFITM3 KO mice as a powerful model to study virus-induced cardiac dysfunction.


2020 ◽  
Author(s):  
Ronghe Zhu ◽  
Cuie Chen ◽  
Qiu Wang ◽  
Xixi Zhang ◽  
Chaosheng Lu ◽  
...  

Abstract Purpose Routine blood parameters, such as the lymphocyte (LYM) count, platelet (PLT) count, lymphocyte-to-monocyte ratio (LMR), neutrophil-to-lymphocyte ratio (NLR), LYM*PLT and mean platelet volume-to-platelet ratio (MPV/PLT), are widely used to predict the prognosis of infectious diseases. We aimed to explore the value of these parameters in the early identification of influenza virus infection in children.Methods We conducted a single-center, retrospective, observational study of fever with influenza-like symptoms in pediatric outpatients from different age groups and evaluated the predictive value of various routine blood parameters measured within 48 hours of the onset of fever for influenza virus infection.Results The LYM count, PLT count, LMR and LYM*PLT were lower, and the NLR and MPV/PLT were higher in children with an influenza infection (PCR-confirmed and symptomatic). The LYM count, LMR and LYM*PLT in the influenza infection group were lower in the 1- to 6-year-old subgroup, and the LMR and LYM*PLT in the influenza infection group were lower in the >6-year-old subgroup. In the 1- to 6-year-old subgroup, the cutoff value of the LMR for predicting influenza A virus infection was 3.75, the sensitivity was 81.87%, the specificity was 84.31%, and the area under the curve (AUC) was 0.886; the cutoff value of the LMR for predicting influenza B virus infection was 3.71, the sensitivity was 73.58%, the specificity was 84.31%, and the AUC was 0.843. In the >6-year-old subgroup, the cutoff value of the LMR for predicting influenza A virus infection was 3.05, the sensitivity was 89.27%, the specificity was 89.61%, and the AUC was 0.949; the cutoff value of the LMR for predicting influenza B virus infection was 2.88, the sensitivity was 83.19%, the specificity was 92.21%, and the AUC was 0.924.Conclusions Routine blood tests are simple, inexpensive and easy to perform, and they are useful for the early identification of influenza virus infection in children. The LMR had the strongest predictive value for influenza virus infection in children older than 1 year, particularly influenza A virus infection.


Sign in / Sign up

Export Citation Format

Share Document