scholarly journals TNK2/ACK1 Strengthen Influenza A Virus Infection by Blocking Viral Matrix 2 Protein(M2) into Lysosome to Degradation

Author(s):  
Ao Zhou ◽  
Xia Dong ◽  
Bin Tang

Abstract BackgroundTNK2/ACK1, a non-receptor tyrosine kinase, plays critical roles in signalling transduces and trafficking. Our previous genome-wide CRISPR/CAS9 knockout screen revealed that mutant of TNK2 produced more restrict to influenza virus infection. In this study, we aim to illustrate the role of TNK2 for influenza A virus (IAV) replication in human cells.ResultsCRISPR/Cas9-mediated mutant of TNK2 resulted in a significant reduction in viral proteins expression and viral titres for multiple influenza strains, and furthermore, a decrease of nuclear import of IAV in the infected TNK2 mutant cells was observed in 3h post-infection. Interestingly, TNK2 mutation enhanced the colocalization of LC3 with autophagic receptor p62 and led to the attenuation of influenza virus-caused accumulation of autophagosomes in TNK2 mutant cells. Further, confocal microscopy visualization result showed that influenza viral matrix 2 (M2) was colocalized with Lamp1 in the infected TNK2 mutant cells in early infection, while almost no colocalization between M2 and Lamp1 was observed in IAV-infected wild-type cells. Moreover, TNK2 depletion also affected the trafficking of early endosome and the movement of influenza viral NP and M2.ConclusionsOur results identified TNK2 as a critical host factor for influenza viral M2 protein trafficking, suggesting that TNK2 will be an attractive target for the development of antivirals therapeutics.

2000 ◽  
Vol 74 (9) ◽  
pp. 3996-4003 ◽  
Author(s):  
Graeme E. Price ◽  
Anna Gaszewska-Mastarlarz ◽  
Demetrius Moskophidis

ABSTRACT During influenza virus infection innate and adaptive immune defenses are activated to eliminate the virus and thereby bring about recovery from illness. Both arms of the adaptive immune system, antibody neutralization of free virus and termination of intracellular virus replication by antiviral cytotoxic T cells (CTLs), play pivotal roles in virus elimination and protection from disease. Innate cytokine responses, such as alpha/beta interferon (IFN-α/β) or IFN-γ, can have roles in determining the rate of virus replication in the initial stages of infection and in shaping the initial inflammatory and downstream adaptive immune responses. The effect of these cytokines on the replication of pneumotropic influenza A virus in the respiratory tract and in the regulation of adaptive antiviral immunity was examined after intranasal infection of mice with null mutations in receptors for IFN-α/β, IFN-γ, and both IFNs. Virus titers in the lungs of mice unable to respond to IFNs were not significantly different from congenic controls for both primary and secondary infection. Likewise the mice were comparably susceptible to X31 (H3N2) influenza virus infection. No significant disruption to the development of normal antiviral CTL or antibody responses was observed. In contrast, mice bearing the disrupted IFN-α/β receptor exhibited accelerated kinetics and significantly higher levels of neutralizing antibody activity during primary or secondary heterosubtypic influenza virus infection. Thus, these observations reveal no significant contribution for IFN-controlled pathways in shaping acute or memory T-cell responses to pneumotropic influenza virus infection but do indicate some role for IFN-α/β in the regulation of antibody responses. Recognizing the pivotal role of CTLs and antibody in virus clearance, it is reasonable to assume a redundancy in IFN-mediated antiviral effects in pulmonary influenza. However, IFN-α/β seems to be a valid factor in determining tissue tropism and replicative rates of highly virulent influenza virus strains as reported previously by others, and this aspect is discussed here.


2020 ◽  
Author(s):  
Ronghe Zhu ◽  
Cuie Chen ◽  
Qiu Wang ◽  
Xixi Zhang ◽  
Chaosheng Lu ◽  
...  

Abstract Purpose Routine blood parameters, such as the lymphocyte (LYM) count, platelet (PLT) count, lymphocyte-to-monocyte ratio (LMR), neutrophil-to-lymphocyte ratio (NLR), LYM*PLT and mean platelet volume-to-platelet ratio (MPV/PLT), are widely used to predict the prognosis of infectious diseases. We aimed to explore the value of these parameters in the early identification of influenza virus infection in children.Methods We conducted a single-center, retrospective, observational study of fever with influenza-like symptoms in pediatric outpatients from different age groups and evaluated the predictive value of various routine blood parameters measured within 48 hours of the onset of fever for influenza virus infection.Results The LYM count, PLT count, LMR and LYM*PLT were lower, and the NLR and MPV/PLT were higher in children with an influenza infection (PCR-confirmed and symptomatic). The LYM count, LMR and LYM*PLT in the influenza infection group were lower in the 1- to 6-year-old subgroup, and the LMR and LYM*PLT in the influenza infection group were lower in the >6-year-old subgroup. In the 1- to 6-year-old subgroup, the cutoff value of the LMR for predicting influenza A virus infection was 3.75, the sensitivity was 81.87%, the specificity was 84.31%, and the area under the curve (AUC) was 0.886; the cutoff value of the LMR for predicting influenza B virus infection was 3.71, the sensitivity was 73.58%, the specificity was 84.31%, and the AUC was 0.843. In the >6-year-old subgroup, the cutoff value of the LMR for predicting influenza A virus infection was 3.05, the sensitivity was 89.27%, the specificity was 89.61%, and the AUC was 0.949; the cutoff value of the LMR for predicting influenza B virus infection was 2.88, the sensitivity was 83.19%, the specificity was 92.21%, and the AUC was 0.924.Conclusions Routine blood tests are simple, inexpensive and easy to perform, and they are useful for the early identification of influenza virus infection in children. The LMR had the strongest predictive value for influenza virus infection in children older than 1 year, particularly influenza A virus infection.


Pathogens ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 167 ◽  
Author(s):  
Mark Y. Sangster ◽  
Phuong Q. T. Nguyen ◽  
David J. Topham

When influenza A virus infects an immune individual, preexisting memory B cell (MBC) activation and rapid anamnestic antibody production plays a key role in viral clearance. The most effective neutralizing antibodies target the antigenically variable head of the viral hemagglutinin (HA); antibodies against the conserved HA stalk provide broader but less potent protection. In this review, we provide a comprehensive picture of an adult’s HA-specific antibody response to influenza virus infection. The process is followed from preexisting HA-specific MBC activation and rapid production of anti-HA antibodies, through to germinal center seeding and adaptation of the response to novel features of the HA. A major focus of the review is the role of competition between preexisting MBCs in determining the character of the HA-reactive antibody response. HA novelty modifies this competition and can shift the response from the immunodominant head to the stalk. We suggest that antibodies resulting from preexisting MBC activation are important regulators of anti-HA antibody production and play a role in positive selection of germinal center B cells reactive to novel HA epitopes. Our review also considers the role of MBCs in the effects of early-life imprinting on HA head- and stalk-specific antibody responses to influenza infection. An understanding of the processes described in this review will guide development of vaccination strategies that provide broadly effective protection.


2008 ◽  
Vol 89 (1) ◽  
pp. 60-67 ◽  
Author(s):  
Norio Ogata ◽  
Takashi Shibata

Influenza virus infection is one of the major causes of human morbidity and mortality. Between humans, this virus spreads mostly via aerosols excreted from the respiratory system. Current means of prevention of influenza virus infection are not entirely satisfactory because of their limited efficacy. Safe and effective preventive measures against pandemic influenza are greatly needed. We demonstrate that infection of mice induced by aerosols of influenza A virus was prevented by chlorine dioxide (ClO2) gas at an extremely low concentration (below the long-term permissible exposure level to humans, namely 0.1 p.p.m.). Mice in semi-closed cages were exposed to aerosols of influenza A virus (1 LD50) and ClO2 gas (0.03 p.p.m.) simultaneously for 15 min. Three days after exposure, pulmonary virus titre (TCID50) was 102.6±1.5 in five mice treated with ClO2, whilst it was 106.7±0.2 in five mice that had not been treated (P=0.003). Cumulative mortality after 16 days was 0/10 mice treated with ClO2 and 7/10 mice that had not been treated (P=0.002). In in vitro experiments, ClO2 denatured viral envelope proteins (haemagglutinin and neuraminidase) that are indispensable for infectivity of the virus, and abolished infectivity. Taken together, we conclude that ClO2 gas is effective at preventing aerosol-induced influenza virus infection in mice by denaturing viral envelope proteins at a concentration well below the permissible exposure level to humans. ClO2 gas could therefore be useful as a preventive means against influenza in places of human activity without necessitating evacuation.


2020 ◽  
Author(s):  
Ronghe Zhu ◽  
Qiu Wang ◽  
Cuie Chen ◽  
Xixi Zhang ◽  
Chaosheng Lu ◽  
...  

Abstract Purpose We aimed to explore the value of Routine blood parameters, such as the lymphocyte (LYM) count, platelet (PLT) count, lymphocyte-to-monocyte ratio (LMR), neutrophil-to-lymphocyte ratio (NLR), LYM*PLT and mean platelet volume-to-platelet ratio (MPV/PLT), are widely used to predict the prognosis of infectious diseases, for predicting influenza virus infection in children. Methods We conducted a single-center, retrospective, observational study on fever with influenza-like symptom in pediatric outpatients in different age groups and evaluated the predictive value of various routine blood parameters within 48 hours of the onset of fever after influenza virus infection. Results The LYM count, PLT count, LMR and LYM*PLT were lower, and the NLR and MPV/PLT were higher in the infected children. The LYM count, LMR and LYM*PLT in the infected group were lower in the 1- to 6-year-old group, and the LMR and LYM*PLT in the infected group were lower in the > 6-year-old group. In the 1- to 6-year-old group, the cutoff value of the LMR for predicting influenza A virus infection was 3.75, the sensitivity was 81.87%, the specificity was 84.31%, and the AUC was 0.886; the cutoff value of the LMR for predicting influenza B virus infection was 3.71, the sensitivity was 73.58%, the specificity was 84.31%, and the AUC was 0.843. In the > 6-year-old group, the cutoff value of the LMR for predicting influenza A virus infection was 3.05, the sensitivity was 89.27%, the specificity was 89.61%, and the AUC was 0.949; the cutoff value of the LMR for predicting influenza B virus infection was 2.88, the sensitivity was 83.19%, the specificity was 92.21%, and the AUC was 0.924. Conclusions Routine blood tests are simple, inexpensive and easy to perform, and they are useful for predicting influenza virus infection in children. The LMR had the strongest predictive value for influenza virus infection in children older than 1 year, especially influenza A virus infection.


2000 ◽  
Vol 74 (24) ◽  
pp. 11566-11573 ◽  
Author(s):  
Xiuyan Wang ◽  
Ming Li ◽  
Hongyong Zheng ◽  
Thomas Muster ◽  
Peter Palese ◽  
...  

ABSTRACT The alpha/beta interferon (IFN-α/β) system represents one of the first lines of defense against virus infections. As a result, most viruses encode IFN antagonistic factors which enhance viral replication in their hosts. We have previously shown that a recombinant influenza A virus lacking the NS1 gene (delNS1) only replicates efficiently in IFN-α/β-deficient systems. Consistent with this observation, we found that infection of tissue culture cells with delNS1 virus, but not with wild-type influenza A virus, induced high levels of mRNA synthesis from IFN-α/β genes, including IFN-β. It is known that transactivation of the IFN-β promoter depends on NF-κB and several other transcription factors. Interestingly, cells infected with delNS1 virus showed high levels of NF-κB activation compared with those infected with wild-type virus. Expression of dominant-negative inhibitors of the NF-κB pathway during delNS1 virus infection prevented the transactivation of the IFN-β promoter, demonstrating a functional link between NF-κB activation and IFN-α/β synthesis in delNS1 virus-infected cells. Moreover, expression of the NS1 protein prevented virus- and/or double-stranded RNA (dsRNA)-mediated activation of the NF-κB pathway and of IFN-β synthesis. This inhibitory property of the NS1 protein of influenza A virus was dependent on its ability to bind dsRNA, supporting a model in which binding of NS1 to dsRNA generated during influenza virus infection prevents the activation of the IFN system. NS1-mediated inhibition of the NF-κB pathway may thus play a key role in the pathogenesis of influenza A virus.


2012 ◽  
Vol 93 (5) ◽  
pp. 987-997 ◽  
Author(s):  
Kewei Fan ◽  
Yinping Jia ◽  
Song Wang ◽  
Hua Li ◽  
Defeng Wu ◽  
...  

Although the T-cell-mediated immune response to influenza virus has been studied extensively, little information is available on the direct interaction between influenza virus and T-cells that pertains to severe diseases in humans and animals. To address these issues, we utilized the BALB/c mouse model combined with primary T-cells infected with A/WSN/33 influenza virus to investigate whether influenza virus has an affinity for T-cells in vivo. We observed that small proportions of CD4+ T-cells and CD8+ T-cells in spleen and thymus expressed viral proteins in infected mice. A significant proportion of mouse primary T-cells displayed expression of α-2,6 sialic acid-linked influenza virus receptor and were infected directly by influenza A virus. These experiments reveal that there exists a population of T-cells that is susceptible to influenza A virus infection. Furthermore, we employed human Jurkat T-cells to investigate the virus–T-cell interaction, with particular emphasis on understanding whether Itk (interleukin-2-inducible T-cell kinase), a Tec family tyrosine kinase that regulates T-cell activation, is involved in virus infection of T-cells. Interestingly, influenza virus infection resulted in an increased recruitment of Itk to the plasma membrane and an increased level of phospholipase C-γ1 (PLC-γ1) phosphorylation, suggesting that Itk/PLC-γ1 signalling is activated by the virus infection. We demonstrated that depletion of Itk inhibited the replication of influenza A virus, whereas overexpression of Itk increased virus replication. These results indicate that Itk is required for efficient replication of influenza virus in infected T-cells.


2012 ◽  
Vol 93 (3) ◽  
pp. 555-559 ◽  
Author(s):  
Michael M. Kaminski ◽  
Annette Ohnemus ◽  
Marius Cornitescu ◽  
Peter Staeheli

Types I and III interferons (IFNs) elicit protective antiviral immune responses during influenza virus infection. Although many cell types can synthesize IFN in response to virus infection, it remains unclear which IFN sources contribute to antiviral protection in vivo. We found that mice carrying functional alleles of the Mx1 influenza virus resistance gene partially lost resistance to infection with a highly pathogenic H7N7 influenza A virus strain if Toll-like receptor 7 (TLR7) signalling was compromised. This effect was achieved by deleting either the TLR7 gene or the gene encoding the TLR7 adaptor molecule MyD88. A similar decrease of influenza virus resistance was observed when animals were deprived of plasmacytoid dendritic cells (pDCs) at day 1 post-infection. Our results provide in vivo proof that pDCs contribute to the protection of the lung against influenza A virus infections, presumably via signals from TLR7.


Viruses ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1007 ◽  
Author(s):  
Xiaodong Tian ◽  
Kun Zhang ◽  
Jie Min ◽  
Can Chen ◽  
Ying Cao ◽  
...  

Influenza A virus (IAV) has developed strategies to utilize host metabolites which, after identification and isolation, can be used to discover the value of immunometabolism. During this study, to mimic the metabolic processes of influenza virus infection in human cells, we infect A549 cells with H1N1 (WSN) influenza virus and explore the metabolites with altered levels during the first cycle of influenza virus infection using ultra-high-pressure liquid chromatography–quadrupole time-of-flight mass spectrometer (UHPLC–Q-TOF MS) technology. We annotate the metabolites using MetaboAnalyst and the Kyoto Encyclopedia of Genes and Genomes pathway analyses, which reveal that IAV regulates the abundance of the metabolic products of host cells during early infection to provide the energy and metabolites required to efficiently complete its own life cycle. These metabolites are correlated with the tricarboxylic acid (TCA) cycle and mainly are involved in purine, lipid, and glutathione metabolisms. Concurrently, the metabolites interact with signal receptors in A549 cells to participate in cellular energy metabolism signaling pathways. Metabonomic analyses have revealed that, in the first cycle, the virus not only hijacks cell metabolism for its own replication, but also affects innate immunity, indicating a need for further study of the complex relationship between IAV and host cells.


2012 ◽  
Vol 19 (3) ◽  
pp. 334-337 ◽  
Author(s):  
Maying Tse ◽  
Mia Kim ◽  
Chung-Hei Chan ◽  
Po-Lai Ho ◽  
Siu-Kit Ma ◽  
...  

ABSTRACTThe reverse zoonotic transmission of the pandemic H1N1 2009 influenza virus to swine necessitates enhanced surveillance of swine for influenza virus infection. Using a well-characterized panel of naturally infected swine sera, we evaluated and optimized the performances of three commercially available competitive enzyme-linked immunosorbent assays (ELISAs), namely, the IDEXX Influenza A Ab test, IDEXX AI MultiS-Screen Ab test, and IDVet ID Screen influenza A antibody competition ELISA, for detecting influenza A virus-reactive antibodies in swine. Receiver operating characteristic (ROC) analysis suggests that adjustment of the manufacturer-recommended cutoff values optimizes the sensitivity and specificity of these assays, making them applicable for seroepidemiology studies of swine influenza. Using such optimized cutoff levels, the sensitivity and specificity of the IDEXX Influenza A Ab test were 86% and 89%, respectively; those for the IDEXX AI MultiS-Screen Ab test were 91% and 87%, respectively; and those for the IDVet ID Screen influenza A test were 95% and 79%, respectively.


Sign in / Sign up

Export Citation Format

Share Document