A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein βγ subunits

Cell ◽  
1994 ◽  
Vol 77 (1) ◽  
pp. 83-93 ◽  
Author(s):  
L. Stephens ◽  
A. Smrcka ◽  
F.T. Cooke ◽  
T.R. Jackson ◽  
P.C. Sternweis ◽  
...  
2012 ◽  
Vol 441 (3) ◽  
pp. 851-858 ◽  
Author(s):  
Aliaksei Shymanets ◽  
Mohammad R. Ahmadian ◽  
Katja T. Kössmeier ◽  
Reinhard Wetzker ◽  
Christian Harteneck ◽  
...  

G-protein-regulated PI3Kγ (phosphoinositide 3-kinase γ) plays a crucial role in inflammatory and allergic processes. PI3Kγ, a dimeric protein formed by the non-catalytic p101 and catalytic p110γ subunits, is stimulated by receptor-released Gβγ complexes. We have demonstrated previously that Gβγ stimulates both monomeric p110γ and dimeric p110γ/p101 lipid kinase activity in vitro. In order to identify the Gβ residues responsible for the Gβγ–PI3Kγ interaction, we examined Gβ1 mutants for their ability to stimulate lipid and protein kinase activities and to recruit PI3Kγ to lipid vesicles. Our findings revealed different interaction profiles of Gβ residues interacting with p110γ or p110γ/p101. Moreover, p101 was able to rescue the stimulatory activity of Gβ1 mutants incapable of modulating monomeric p110γ. In addition to the known adaptor function of p101, in the present paper we show a novel regulatory role of p101 in the activation of PI3Kγ.


1994 ◽  
Vol 269 (24) ◽  
pp. 16525-16528
Author(s):  
P.A. Thomason ◽  
S.R. James ◽  
P.J. Casey ◽  
C.P. Downes

1994 ◽  
Vol 269 (44) ◽  
pp. 27372-27377
Author(s):  
Y H Chen ◽  
J Pouysségur ◽  
S A Courtneidge ◽  
E Van Obberghen-Schilling

2002 ◽  
Vol 13 (2) ◽  
pp. 480-492 ◽  
Author(s):  
Tom D. Wolkow ◽  
Tamar Enoch

Fission yeast Rad3 is a member of a family of phosphoinositide 3-kinase -related kinases required for the maintenance of genomic stability in all eukaryotic cells. In fission yeast, Rad3 regulates the cell cycle arrest and recovery activities associated with the G2/M checkpoint. We have developed an assay that directly measures Rad3 kinase activity in cells expressing physiological levels of the protein. Using the assay, we demonstrate directly that Rad3 kinase activity is stimulated by checkpoint signals. Of the five other G2/M checkpoint proteins (Hus1, Rad1, Rad9, Rad17, and Rad26), only Rad26 was required for Rad3 kinase activity. Because Rad26 has previously been shown to interact constitutively with Rad3, our results demonstrate that Rad26 is a regulatory subunit, and Rad3 is the catalytic subunit, of the Rad3/Rad26 kinase complex. Analysis of Rad26/Rad3 kinase activation in rad26.T12, a mutant that is proficient for cell cycle arrest, but defective in recovery, suggests that these two responses to checkpoint signals require quantitatively different levels of kinase activity from the Rad3/Rad26 complex.


2003 ◽  
Vol 14 (4) ◽  
pp. 1727-1743 ◽  
Author(s):  
Binggang Sun ◽  
Richard A. Firtel

We have identified a gene encoding RGS domain-containing protein kinase (RCK1), a novel regulator of G protein signaling domain-containing protein kinase. RCK1 mutant strains exhibit strong aggregation and chemotaxis defects. rck1 null cells chemotax ∼50% faster than wild-type cells, suggesting RCK1 plays a negative regulatory role in chemotaxis. Consistent with this finding, overexpression of wild-type RCK1 reduces chemotaxis speed by ∼40%. On cAMP stimulation, RCK1 transiently translocates to the membrane/cortex region with membrane localization peaking at ∼10 s, similar to the kinetics of membrane localization of the pleckstrin homology domain-containing proteins CRAC, Akt/PKB, and PhdA. RCK1 kinase activity also increases dramatically. The RCK1 kinase activity does not rapidly adapt, but decreases after the cAMP stimulus is removed. This is particularly novel considering that most other chemoattractant-activated kinases (e.g., Akt/PKB, ERK1, ERK2, and PAKa) rapidly adapt after activation. Using site-directed mutagenesis, we further show that both the RGS and kinase domains are required for RCK1 function and that RCK1 kinase activity is required for the delocalization of RCK1 from the plasma membrane. Genetic evidence suggests RCK1 function lies downstream from Gα2, the heterotrimeric G protein that couples to the cAMP chemoattractant receptors. We suggest that RCK1 might be part of an adaptation pathway that regulates aspects of chemotaxis in Dictyostelium.


Cell Cycle ◽  
2012 ◽  
Vol 11 (19) ◽  
pp. 3523-3524
Author(s):  
Ana González-García ◽  
Ana C. Carrera

2011 ◽  
Vol 286 (22) ◽  
pp. 19259-19269 ◽  
Author(s):  
Il-Ha Lee ◽  
Sung-Hee Song ◽  
Craig R. Campbell ◽  
Sharad Kumar ◽  
David I. Cook ◽  
...  

The G protein-coupled receptor kinase (GRK2) belongs to a family of protein kinases that phosphorylates agonist-activated G protein-coupled receptors, leading to G protein-receptor uncoupling and termination of G protein signaling. GRK2 also contains a regulator of G protein signaling homology (RH) domain, which selectively interacts with α-subunits of the Gq/11 family that are released during G protein-coupled receptor activation. We have previously reported that kinase activity of GRK2 up-regulates activity of the epithelial sodium channel (ENaC) in a Na+ absorptive epithelium by blocking Nedd4-2-dependent inhibition of ENaC. In the present study, we report that GRK2 also regulates ENaC by a mechanism that does not depend on its kinase activity. We show that a wild-type GRK2 (wtGRK2) and a kinase-dead GRK2 mutant (K220RGRK2), but not a GRK2 mutant that lacks the C-terminal RH domain (ΔRH-GRK2) or a GRK2 mutant that cannot interact with Gαq/11/14 (D110AGRK2), increase activity of ENaC. GRK2 up-regulates the basal activity of the channel as a consequence of its RH domain binding the α-subunits of Gq/11. We further found that expression of constitutively active Gαq/11 mutants significantly inhibits activity of ENaC. Conversely, co-expression of siRNA against Gαq/11 increases ENaC activity. The effect of Gαq on ENaC activity is not due to change in ENaC membrane expression and is independent of Nedd4-2. These findings reveal a novel mechanism by which GRK2 and Gq/11 α-subunits regulate the activity ENaC.


2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
Marciano Sablad ◽  
Glenda Castro ◽  
Natasha Rozenkrants ◽  
Karen Ngo ◽  
Tadimeti Rao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document