scholarly journals Study of chronic lymphocytic leukemia cells by FT-IR spectroscopy and cluster analysis

1996 ◽  
Vol 20 (8) ◽  
pp. 649-655 ◽  
Author(s):  
Christian P. Schultz ◽  
Kan-zhi Liu ◽  
James B. Johnston ◽  
Henry H. Mantsch
2011 ◽  
Vol 25 (6) ◽  
pp. 271-285 ◽  
Author(s):  
Tao Hu ◽  
Wen-Ying Jin ◽  
Cun-Gui Cheng

Fourier transform infrared spectroscopy (FT-IR) with Horizontal Attenuated Total Reflectance (HATR) techniques is used to obtain the FT-IR spectra of five kinds of mosses, such asPtychomitrium dentatum(Mitt.) Jaeg.,Ptychomitrium polyphylloides(C. Muell.) Par.,Ptychomitrium sinense(Mitt.) Jaeg.,Macromitrium syntrichophyllumTher. Etp. Vard., andMacromitrium ferrieiCard. Sz Ther. Based on the comparison of the above mosses in the FT-IR spectra, the region ranging from 4000 to 650 cm−1was selected as the characteristic spectra for analysis. Principal component analysis (PCA) and cluster analysis are considered to identify the five moss species. Because they belong to the homogeneous plants, and have similar chemical components and close FT-IR spectroscopy, PCA and cluster analysis can only give a rough result of classification among the five moss species, Fourier self-deconvolution (FSD) and discrete wavelet transform (DWT) methods are used to enhance the differences between them. We use these methods for further study. Results show that it is an excellent method to use FT-IR spectroscopy combined with FSD and DWT to classify the different species in the same family. FT-IR spectroscopy combined with chemometrics, such as FSD and DWT, can be used as an effective tool in systematic research of bryophytes.


2015 ◽  
Vol 9 (1) ◽  
pp. 67-75
Author(s):  
Mara Grube ◽  
Olga Chusova ◽  
Marita Gavare ◽  
Karlis Shvirksts ◽  
Emma Nehrenheim ◽  
...  

This study demonstrates the application of FT-IR spectroscopy for investigating the remediation of pink water with the low cost adsorbent pine bark. The removal of 2,4,6-trinitrotoluene (TNT) from pink water by adsorption to pine bark was accompanied by a reduction in intensities of peaks at 1544 and 1347 cm in the spectra of acetonitrile extracts of the pine bark. Hierarchial cluster analysis differentiated samples with high (30-180 mg/L) and low (0-4 mg/L) TNT concentrations, demonstrating the potential of this approach as a quick screening method for the control of the removal of TNT from pink water. The amount of lignin in pine bark was inversely proportional to the size of the pine bark particles, while the concentration of phenolic hydroxyl groups increases with increasing size of pine bark particles. FT-IR spectra showed that as well as TNT, pine bark can also adsorb nitramine explosives such as RDX and HMX.


The Analyst ◽  
2011 ◽  
Vol 136 (24) ◽  
pp. 5247 ◽  
Author(s):  
Tomasz P. Wrobel ◽  
Lukasz Mateuszuk ◽  
Stefan Chlopicki ◽  
Kamilla Malek ◽  
Malgorzata Baranska

Author(s):  
Maciej Strzempek ◽  
Karolina A. Tarach ◽  
Kinga Góra-Marek ◽  
Fernando Rey ◽  
Miguel Palomino ◽  
...  

Abstract In this article the results of the statistical MC modelling corroborated by the FT-IR spectroscopy and gravimetric adsorption studies of the low aliphatic hydrocarbons in ZSM-5 (Si/Al =28 or...


2021 ◽  
Vol 22 (4) ◽  
pp. 2191
Author(s):  
Jing Huang ◽  
Nairveen Ali ◽  
Elsie Quansah ◽  
Shuxia Guo ◽  
Michel Noutsias ◽  
...  

In recent decades, vibrational spectroscopic methods such as Raman and FT-IR spectroscopy are widely applied to investigate plasma and serum samples. These methods are combined with drop coating deposition techniques to pre-concentrate the biomolecules in the dried droplet to improve the detected vibrational signal. However, most often encountered challenge is the inhomogeneous redistribution of biomolecules due to the coffee-ring effect. In this study, the variation in biomolecule distribution within the dried-sample droplet has been investigated using Raman and FT-IR spectroscopy and fluorescence lifetime imaging method. The plasma-sample from healthy donors were investigated to show the spectral differences between the inner and outer-ring region of the dried-sample droplet. Further, the preferred location of deposition of the most abundant protein albumin in the blood during the drying process of the plasma has been illustrated by using deuterated albumin. Subsequently, two patients with different cardiac-related diseases were investigated exemplarily to illustrate the variation in the pattern of plasma and serum biomolecule distribution during the drying process and its impact on patient-stratification. The study shows that a uniform sampling position of the droplet, both at the inner and the outer ring, is necessary for thorough clinical characterization of the patient’s plasma and serum sample using vibrational spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document