Thermal properties as controls on rock surface temperature maxima, and possible implications for rock weathering

2021 ◽  
Vol 11 (9) ◽  
pp. 3773
Author(s):  
Simone Mineo ◽  
Giovanna Pappalardo

Infrared thermography is a growing technology in the engineering geological field both for the remote survey of rock masses and as a laboratory tool for the non-destructive characterization of intact rock. In this latter case, its utility can be found either from a qualitative point of view, highlighting thermal contrasts on the rock surface, or from a quantitative point of view, involving the study of the surface temperature variations. Since the surface temperature of an object is proportional to its emissivity, the knowledge of this last value is crucial for the correct calibration of the instrument and for the achievement of reliable thermal outcomes. Although rock emissivity can be measured according to specific procedures, there is not always the time or possibility to carry out such measurements. Therefore, referring to reliable literature values is useful. In this frame, this paper aims at providing reference emissivity values belonging to 15 rock types among sedimentary, igneous and metamorphic categories, which underwent laboratory emissivity estimation by employing a high-sensitivity thermal camera. The results show that rocks can be defined as “emitters”, with emissivity generally ranging from 0.89 to 0.99. Such variability arises from both their intrinsic properties, such as the presence of pores and the different thermal behavior of minerals, and the surface conditions, such as polishing treatments for ornamental stones. The resulting emissivity values are reported and commented on herein for each different studied lithology, thus providing not only a reference dataset for practical use, but also laying the foundation for further scientific studies, also aimed at widening the rock aspects to investigate through IRT.


Holzforschung ◽  
2008 ◽  
Vol 62 (1) ◽  
pp. 91-98 ◽  
Author(s):  
Johannes Konnerth ◽  
David Harper ◽  
Seung-Hwan Lee ◽  
Timothy G. Rials ◽  
Wolfgang Gindl

Abstract Cross sections of wood adhesive bonds were studied by scanning thermal microscopy (SThM) with the aim of scrutinizing the distribution of adhesive in the bond line region. The distribution of thermal conductivity, as well as temperature in the bond line area, was measured on the surface by means of a nanofabricated thermal probe offering high spatial and thermal resolution. Both the thermal conductivity and the surface temperature measurements were found suitable to differentiate between materials in the bond region, i.e., adhesive, cell walls and embedding epoxy. Of the two SThM modes available, the surface temperature mode provided images with superior optical contrast. The results clearly demonstrate that the polyurethane adhesive did not cause changes of thermal properties in wood cell walls with adhesive contact. By contrast, cell walls adjacent to a phenol-resorcinol-formaldehyde adhesive showed distinctly changed thermal properties, which is attributed to the presence of adhesive in the wood cell wall.


Author(s):  
J. C. Jaeger

The object of this note is to indicate a numerical method for finding periodic solutions of a number of important problems in conduction of heat in which the boundary conditions are periodic in the time and may be linear or non-linear. One example is that of a circular cylinder which is heated by friction along the generators through a rotating arc of its circumference, the remainder of the surface being kept at constant temperature; here the boundary conditions are linear but mixed. Another example, which will be discussed in detail below, is that of the variation of the surface temperature of the moon during a lunation; in this case the boundary condition is non-linear. In all cases the thermal properties of the solid will be assumed to be independent of temperature. Only the semi-infinite solid will be considered here, though the method applies equally well to other cases.


1991 ◽  
Vol 113 (4) ◽  
pp. 395-401 ◽  
Author(s):  
M. W. Harris ◽  
A. S. Lavine

Heat generated during grinding can cause thermal damage to the workpiece and wheel. It is therefore important to understand the thermal aspects of grinding. This paper addresses heat conduction into the wheel, by considering a single abrasive grain in contact with the workpiece. In particular, the effect of the bond material on conduction into the grain is investigated. The results for the grain surface temperature are given in terms of parameters describing the geometry and thermal properties of the grain and bond. The beneficial effect of a high thermal conductivity for both the grain and the bond is clearly demonstrated.


Sign in / Sign up

Export Citation Format

Share Document