Mechanical behaviour and strain rate dependency of high porosity chalk

2021 ◽  
Vol 250 ◽  
pp. 01035
Author(s):  
Louise Le Barbenchon ◽  
Philippe Viot ◽  
Jérémie Girardot ◽  
Jean-Benoît Kopp

Polymeric cellular materials are used in many different application domains such as transport, sport, food, health and energy. Therefore, the conditions of use of these materials represent wide temperature and strain-rate ranges. The mechanical behaviour of these foams demonstrate a strong dependency to it. In order to be able to predict such dependency, its origin has to be better understood. For this study, a bio-based cellular material, agglomerated cork, has been chosen to evaluate the temperature and strain-rate dependency of the mechanical behaviour. The visco-elastic behaviour of the material was first studied between −80°C and 100°C at frequencies between 0.01 Hz and 100 Hz. The compressive mechanical behaviour was then studied on a large range of temperature (from −30°C to 100°C) and strain rates (from 4.2 10−5 s−1 to 1250 s−1). A specific set-up was finally used to operate dynamic tests at low and high temperature. These results were used to discuss the evolution of the mechanical beahviour with these environnemental conditions based on the knowledge of the mechanical behaviour of the constitutive materials.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Abdullah A. Al-Juaid ◽  
Ramzi Othman

The main focus of this paper is in evaluating four constitutive relations which model the strain rate dependency of polymers yield stress. Namely, the two-term power-law, the Ree-Eyring, the cooperative, and the newly modified-Eyring equations are used to fit tensile and compression yield stresses of polycarbonate, which are obtained from the literature. The four equations give good agreement with the experimental data. Despite using only three material constants, the modified-Eyring equation, which considers a strain rate-dependent activation volume, gives slightly worse fit than the three other equations. The two-term power-law and the cooperative equation predict a progressive increase in the strain rate sensitivity of the yield stress. Oppositely, the Ree-Eyring and the modified-Eyring equations show a clear transition between the low and high strain rate ranges. Namely, they predict a linear dependency of the yield stress in terms of the strain rate at the low strain rate range. Crossing a threshold strain rate, the yield stress sensitivity sharply increases as the strain rate increases. Hence, two different behaviors were observed though the four equations fit well the experimental data. More experimental data, mainly at the intermediate strain rate range, are needed to conclude which, of the two behaviors, is more appropriate for polymers.


2019 ◽  
Vol 56 (1) ◽  
pp. 102-115 ◽  
Author(s):  
Friedrich Levin ◽  
Stefan Vogt ◽  
Roberto Cudmani

To characterize the effects of creep, strain rate, and relaxation in granular soils, different sands have been studied under oedometric loading. The tests were analysed in the framework of the isotache concept. The results show increasing creep rates with increasing vertical stresses and a strong reduction of the creep rate upon unloading. A lower void ratio leads to less creep. Evaluation of the ratio Cα/Cc, where Cα is the creep coefficient and Cc is the compression index, demonstrates considerable deviation from a constant soil-specific value for the sands. With increasing fine content, however, a constant soil-specific ratio has been found for a silty sand. In strain rate–controlled tests, a sand with low and a sand with significant content of nonplastic fines were compared. Constant rate of strain tests displayed practically no strain rate dependency for the sand with little fines and a well visible strain rate dependency for the very silty sand. Tests with stepwise change of strain rate showed non-isotache behaviour for the sand with little fines and isotache behaviour for the other. Stress-relaxation tests displayed an isochronous behaviour. The analysis of the three viscous effects in sands showed they cannot altogether be mathematically described in the framework of the isotache concept. A new compression model for the creep behaviour of sands is presented.


2019 ◽  
Vol 60 (2) ◽  
pp. 235-248 ◽  
Author(s):  
T. Fourest ◽  
P. Bouda ◽  
L. C. Fletcher ◽  
D. Notta-Cuvier ◽  
E. Markiewicz ◽  
...  

2020 ◽  
pp. 002199832097679
Author(s):  
V Cucumazzo ◽  
E Demirci ◽  
B Pourdeyhimi ◽  
VV Silberschmidt

Calendered nonwovens, formed by polymeric fibres, are three-phase heterogeneous materials, comprising a fibrous matrix, bond-areas and interface regions. As a result, two main factors of anisotropy can be identified. The first one is ascribable to a random fibrous microstructure, with the second one related to orientation of a bond pattern. This paper focuses on the first type of anisotropy in thin and thick nonwovens under uniaxial tensile loading. Individual and combined effects of anisotropy and strain rate were studied by conducting uniaxial tensile tests in various loading directions (0°, 30°, 45°, 60° and 90° with regard to the main fabric’s direction) and strain rate (0.01, 0.1 and 0.5 s−1). Fabrics exhibited an initial linear elastic response, followed by nonlinear strain hardening up to necking and final softening. The studied allowed assessment of the extent the effects of loading direction (anisotropy), planar density and strain rate on the mechanical response of the calendered fabrics. The evidence supported the conclusion that anisotropy is the most crucial factor, also delineating the balance between the fabric’s load-bearing capacity and extension level along various directions. The strain rate produced a marked effect on the fibre’s response, with increased stress at higher strain rate while this effect in the fabric was small. The results demonstrated the differences of the mechanical behaviour of fabrics from that of their constituent fibres.


Sign in / Sign up

Export Citation Format

Share Document