Optimal policy design with non-linear models The multi-agent case

1986 ◽  
Vol 10 (1-2) ◽  
pp. 27-31 ◽  
Author(s):  
R.G. Becker ◽  
B. Dwolatzky ◽  
E. Karakitsos ◽  
B. Rustem
Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1692
Author(s):  
Rawad Abdulghafor ◽  
Sultan Almotairi

There has been tremendous work on multi-agent systems (MAS) in recent years. MAS consist of multiple autonomous agents that interact with each order to solve a complex problem. Several applications of MAS can be found in computer networks, smart grids, and the modeling of complex systems. Despite numerous benefits, a significant challenge for MAS is achieving a consensus among agents in a shared target task, which is difficult without applying certain mathematical equations. Non-linear models offer better possibility of resolving consensus for MAS; however, existing non-linear models are considerably complicated and present no guarantees for achieving consensus. This paper proposes a non-linear mathematical model of semi symmetry quadratic operator (SSQO) in order to resolve the issue of consensus in networks of MAS. The model is based on stochastic quadratic operator theory, with added new notations. An important feature for the proposed model is low complexity, fast consensus, and a guaranteed capability to reach a consensus. We present an evaluation of the proposed SSQO model and comparison with other existing models. We demonstrate that an average consensus can be achieved with our model in addition to the emulation effects for the MAS consensus.


Author(s):  
Muklas Rivai

Optimal design is a design which required in determining the points of variable factors that would be attempted to optimize the relevant information so that fulfilled the desired criteria. The optimal fulfillment criteria based on the information matrix of the selected model.


2014 ◽  
Vol 24 (11) ◽  
pp. 1308-1320 ◽  
Author(s):  
M. Mobarakian ◽  
A.A. Zamani ◽  
J. Karmizadeh ◽  
N. Moeeny Naghadeh ◽  
M.S. Emami
Keyword(s):  

Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 850
Author(s):  
Pietro Burrascano ◽  
Matteo Ciuffetti

Ultrasonic techniques are widely used for the detection of defects in solid structures. They are mainly based on estimating the impulse response of the system and most often refer to linear models. High-stress conditions of the structures may reveal non-linear aspects of their behavior caused by even small defects due to ageing or previous severe loading: consequently, models suitable to identify the existence of a non-linear input-output characteristic of the system allow to improve the sensitivity of the detection procedure, making it possible to observe the onset of fatigue-induced cracks and/or defects by highlighting the early stages of their formation. This paper starts from an analysis of the characteristics of a damage index that has proved effective for the early detection of defects based on their non-linear behavior: it is based on the Hammerstein model of the non-linear physical system. The availability of this mathematical model makes it possible to derive from it a number of different global parameters, all of which are suitable for highlighting the onset of defects in the structure under examination, but whose characteristics can be very different from each other. In this work, an original damage index based on the same Hammerstein model is proposed. We report the results of several experiments showing that our proposed damage index has a much higher sensitivity even for small defects. Moreover, extensive tests conducted in the presence of different levels of additive noise show that the new proposed estimator adds to this sensitivity feature a better estimation stability in the presence of additive noise.


1984 ◽  
Vol 15 (1-2) ◽  
pp. 91-96
Author(s):  
K.R. Sawyer ◽  
M.C. Rosalsky

Sign in / Sign up

Export Citation Format

Share Document