Effect of bombesin on [Ca++]i and proliferation of lymphocytes isolated from lamina propria, peyer's patches, and spleen

1992 ◽  
Vol 40 (2) ◽  
pp. 273
Author(s):  
R Waetke ◽  
RM Liehr ◽  
K Bordasch ◽  
H Haller ◽  
M Zeitz ◽  
...  
2020 ◽  
Vol 14 (Supplement_1) ◽  
pp. S172-S172
Author(s):  
A Carrasco Garcia ◽  
A Rao ◽  
E Kokkinou ◽  
S Haapaniemi ◽  
U Lindforss ◽  
...  

Abstract Background The human gut mucosal immune system is compartmentalised in distinct and specialised immune niches. The epithelium and the lamina propria have been proposed as effector sites, while gut-associated lymphoid tissues (GALTs) constitute inductive immune niches. The major mucosal GALTs are the Peyer’s patches in the ileum and the colonic isolated lymphoid follicles (ILFs), scattered in the submucosa of the colon. The majority of studies of human gut immune function in health and disease have analysed unfractionated mucosal tissue samples. Hence, in contrast to mice, little is known about compartmentalised immune cell specialisation in the human gut. The aim of this study was to use novel dissection methods to analyse separate human gut immune niches. Methods Macroscopically healthy margins from colorectal cancer colectomies were obtained at a minimum distance of 10 cm from the tumour border. After faeces, mucus, fat and muscle removal, Peyer’s patches were identified and dissected using a stereomicroscope (based on Keita et al., Lab Invest, 2006). Colonic mucosa and submucosa (containing ILFs) fractions were mechanically separated by forceps (based on the method developed by Fenton et al., Immunity, under revision). Isolation of epithelial and lamina propria fractions from the mucosal compartment was performed by calcium chelation (DTT and EDTA) and enzymatic digestion (Collagenase II and DNAse), respectively. Cell suspensions from each fraction were analysed by flow cytometry (BD LSR-Fortessa and BD FACSymphony). Results As expected, mucosal GALTs were characterised by an enrichment of germinal centre B cells (CD19+CD20+CD38+), lymphoid tissue-like innate lymphoid cells (Lin−CD127+CD117+Nrp1+) and a higher CD4+/CD8+ T-cell ratio vs. mucosa, whereas the mucosal fraction was enriched for plasma cells (CD19+CD20−CD38high) and distinguished by a decreased CD4+/CD8+ T-cell ratio as compared with the GALT in both ileum and colon. CD19+/CD3+ ratios were only higher in Peyer’s patches but not in colonic submucosa enriched with ILFs, possibly due to the smaller size of the B-cell follicles in the latter. The intraepithelial compartment lacked B cells and contained more γδ-T cells as compared with the GALT and lamina propria. Conclusion We have used novel dissection methods in human intestinal tissues that reveal a compartmentalised immune cell specialisation that is in line with what has previously been described in mice. The method will allow for future deeper analysis of the human gut immune niches in health and disease, such as in inflammatory bowel disease.


Blood ◽  
2000 ◽  
Vol 96 (4) ◽  
pp. 1538-1544
Author(s):  
Anil Mishra ◽  
Simon P. Hogan ◽  
Eric B. Brandt ◽  
Marc E. Rothenberg

The gastrointestinal immune system is traditionally thought to be composed of lymphocytes located within Peyer's patches and the lamina propria. We have recently reported that eosinophils also reside in the gastrointestinal tract during healthy states, in particular, within the lamina propria, and that these cells substantially increase after oral allergen exposure. We now demonstrate the presence of eosinophils in Peyer's patches and characterize the signals that regulate the accumulation of eosinophils in Peyer's patches. In contrast to the lamina propria, intestinal Peyer's patches have very low levels of eosinophils under healthy states. However, elevated levels of interleukin-5 (IL-5), generated by transgenic or pharmacologic approaches, result in a dramatic increase in eosinophil levels in Peyer's patches. Most eosinophils are located in the outer cortex and interfollicular regions of the Peyer's patches. To dissect the mechanism of eosinophil trafficking to Peyer's patches, the role of eotaxin was examined. Mice transgenic for IL-5 and genetically deficient in eotaxin were found to have reduced levels of eosinophils in Peyer's patches compared with IL-5-transgenic mice. To prove that eosinophils also traffic to Peyer's patches in wild-type mice, allergic hypersensitivity was induced and Peyer's patches were examined. Exposure to mucosal allergen promoted marked accumulation of eosinophils in Peyer's patches and this process was attenuated in eotaxin-deficient mice. In summary, these data demonstrate that elevated levels of IL-5 and mucosal allergen exposure promote eotaxin-dependent eosinophil trafficking to Peyer's patches. These studies suggest that eosinophils may cooperate with lymphocytes in the development of mucosal immune responses in the gastrointestinal tract.


2015 ◽  
Vol 6 ◽  
Author(s):  
Salas Pimentel Marisol ◽  
Reséndiz Albor Aldo ◽  
Arciniega Martínez Ivonne ◽  
Martínez Becerril Elia ◽  
García Fonseca Alan ◽  
...  

Blood ◽  
2000 ◽  
Vol 96 (4) ◽  
pp. 1538-1544 ◽  
Author(s):  
Anil Mishra ◽  
Simon P. Hogan ◽  
Eric B. Brandt ◽  
Marc E. Rothenberg

Abstract The gastrointestinal immune system is traditionally thought to be composed of lymphocytes located within Peyer's patches and the lamina propria. We have recently reported that eosinophils also reside in the gastrointestinal tract during healthy states, in particular, within the lamina propria, and that these cells substantially increase after oral allergen exposure. We now demonstrate the presence of eosinophils in Peyer's patches and characterize the signals that regulate the accumulation of eosinophils in Peyer's patches. In contrast to the lamina propria, intestinal Peyer's patches have very low levels of eosinophils under healthy states. However, elevated levels of interleukin-5 (IL-5), generated by transgenic or pharmacologic approaches, result in a dramatic increase in eosinophil levels in Peyer's patches. Most eosinophils are located in the outer cortex and interfollicular regions of the Peyer's patches. To dissect the mechanism of eosinophil trafficking to Peyer's patches, the role of eotaxin was examined. Mice transgenic for IL-5 and genetically deficient in eotaxin were found to have reduced levels of eosinophils in Peyer's patches compared with IL-5-transgenic mice. To prove that eosinophils also traffic to Peyer's patches in wild-type mice, allergic hypersensitivity was induced and Peyer's patches were examined. Exposure to mucosal allergen promoted marked accumulation of eosinophils in Peyer's patches and this process was attenuated in eotaxin-deficient mice. In summary, these data demonstrate that elevated levels of IL-5 and mucosal allergen exposure promote eotaxin-dependent eosinophil trafficking to Peyer's patches. These studies suggest that eosinophils may cooperate with lymphocytes in the development of mucosal immune responses in the gastrointestinal tract.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
B. E. Martínez-Carrillo ◽  
C. A. Rosales-Gómez ◽  
N. Ramírez-Durán ◽  
A. A. Reséndiz-Albor ◽  
J. A. Escoto-Herrera ◽  
...  

The consumption of sweeteners has increased as a measure to reduce the consumption of calories and thus combat obesity and diabetes. Sweeteners are found in a large number of products, so chronic consumption has been little explored. The objective of the study was to evaluate the effect of chronic sweetener consumption on the microbiota and immunity of the small intestine in young mice. We used 72 CD1 mice of 21 days old, divided into 3 groups: (i) No treatment, (ii) Group A (6 weeks of treatment), and (iii) Group B (12 weeks of treatment). Groups A and B were divided into 4 subgroups: Control (CL), Sucrose (Suc), Splenda® (Spl), and Svetia® (Sv). The following were determined: anthropometric parameters, percentage of lymphocytes of Peyer’s patches and lamina propria, IL-6, IL-17, leptin, resistin, C-peptide, and TNF-α. From feces, the microbiota of the small intestine was identified. The BMI was not modified; the mice preferred the consumption of Splenda® and Svetia®. The percentage of CD3+ lymphocytes in Peyer’s patches was increased. In the lamina propria, Svetia® increased the percentage of CD3+ lymphocytes, but Splenda® decreases it. The Splenda® and Svetia® subgroups elevate leptin, C-peptide, IL-6, and IL-17, with reduction of resistin. The predominant genus in all groups was Bacillus. The chronic consumption of sweeteners increases the population of lymphocytes in the mucosa of the small intestine. Maybe, Bacillus have the ability to adapt to sweeteners regardless of the origin or nutritional contribution of the same.


PLoS ONE ◽  
2016 ◽  
Vol 11 (10) ◽  
pp. e0163607 ◽  
Author(s):  
Masatoshi Morikawa ◽  
Satoshi Tsujibe ◽  
Junko Kiyoshima-Shibata ◽  
Yohei Watanabe ◽  
Noriko Kato-Nagaoka ◽  
...  

1994 ◽  
Vol 180 (1) ◽  
pp. 111-121 ◽  
Author(s):  
M Murakami ◽  
T Tsubata ◽  
R Shinkura ◽  
S Nisitani ◽  
M Okamoto ◽  
...  

About a half of the antierythrocyte autoantibody transgenic (autoAb Tg) mice, in which almost all B cells are detected in the spleen, lymph nodes, and Peyer's patches, but not in the peritoneal cavity, suffer from autoimmune hemolytic anemia. The occurrence of this disease is strongly linked to production of autoAb by activated peritoneal B-1 cells in the Tg mice. In this study, we have shown that oral administration of lipopolysaccharides (LPS) activated B-1 cells in the lamina propria of the gut as well as the peritoneal cavity in the healthy Tg mice and induced the autoimmune symptoms in all the Tg mice. The activation of peritoneal and lamina propria B-1 cells by enteric LPS is found not only in the anti-RBC autoAb Tg mice and normal mice but also in the aly mice which congenitally lack lymph nodes and Peyer's patches. These results suggest that B-1 cells in the two locations may form a common pool independent of Peyer's patches and lymph nodes, and can be activated by enteric thymus-independent antigens or polyclonal activators such as LPS. The induction of autoimmune hemolytic anemia in the Tg mice by enteric LPS through the activation of B-1 cells in the lamina propria of gut and in the peritoneal cavity suggests that B-1 cells and bacterial infection may play a pathogenic role in the onset of autoimmune diseases.


Sign in / Sign up

Export Citation Format

Share Document