Signal transduction in the control of cell growth and development

1991 ◽  
Vol 7 (1) ◽  
pp. 343-345 ◽  
Author(s):  
T Pawson
2003 ◽  
Vol 285 (6) ◽  
pp. G1181-G1188 ◽  
Author(s):  
Ki-Sook Park ◽  
Nam-Gu Lee ◽  
Ki-Hoo Lee ◽  
Jeong Taeg Seo ◽  
Kang-Yell Choi

Dietary zinc is an important trace element in the body and is related to both cell proliferation and growth arrest. A recent study found that extracellular zinc-sensing receptors trigger intracellular signal transduction in HT-29 human colorectal cancer cells. However, the signaling mechanism causing this growth regulation by extracellular zinc is not clearly understood. At 10- and 100-μM levels of ZnCl2 treatment, HT-29 cell growth and proliferation increased and decreased, respectively, in a minimally serum-starved medium (MSSM). A lack of significant increase in intracellular zinc levels after zinc treatment suggested that this differential growth regulation of HT-29 cells by extracellular zinc is acquired by receptor-mediated signal transduction. Moreover, this zinc-induced growth regulation was differentially affected by PD-98059, suggesting the involvement of the ERK pathway. Transient ERK activation and subsequent cyclin D1 induction were observed on adding 10 μM ZnCl2 in MSSM in the presence of cell proliferation. On the other hand, prolonged ERK activity was observed with a subsequent increase of cyclin D1 and p21Cip/WAF1 on adding 100 μM ZnCl2 in MSSM, and this was associated with nonproliferation. Moreover, this ERK activation and cyclin D1 and p21Cip/WAF1 induction were abolished by PD-98059 pretreatment. The differential regulations of cell growth, ERK activities, and cyclin D1 and p21Cip/WAF1 inductions were also observed in serum-enriched medium containing higher zinc concentrations. Therefore, differential cell cycle regulator induction occurs by a common ERK pathway in the differential growth regulation of HT-29 cells by extracellular zinc.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1620
Author(s):  
Murali Krishna Koramutla ◽  
Manisha Negi ◽  
Belay T. Ayele

Plant growth and development and interactions with the environment are regulated by phytohormones and other signaling molecules. During their evolution, plants have developed strategies for efficient signal perception and for the activation of signal transduction cascades to maintain proper growth and development, in particular under adverse environmental conditions. Abscisic acid (ABA) is one of the phytohormones known to regulate plant developmental events and tolerance to environmental stresses. The role of ABA is mediated by both its accumulated level, which is regulated by its biosynthesis and catabolism, and signaling, all of which are influenced by complex regulatory mechanisms. Under stress conditions, plants employ enzymatic and non-enzymatic antioxidant strategies to scavenge excess reactive oxygen species (ROS) and mitigate the negative effects of oxidative stress. Glutathione (GSH) is one of the main antioxidant molecules playing a critical role in plant survival under stress conditions through the detoxification of excess ROS, maintaining cellular redox homeostasis and regulating protein functions. GSH has recently emerged as an important signaling molecule regulating ABA signal transduction and associated developmental events, and response to stressors. This review highlights the current knowledge on the interplay between ABA and GSH in regulating seed dormancy, germination, stomatal closure and tolerance to drought.


2010 ◽  
Vol 46 (6) ◽  
pp. 578-586 ◽  
Author(s):  
Ricardo Sotelo ◽  
Verónica Garrocho-Villegas ◽  
Raúl Aguilar ◽  
Ma. Elena Calderón ◽  
Estela Sánchez de Jiménez

2003 ◽  
Vol 33 (8) ◽  
pp. 2223-2232 ◽  
Author(s):  
Jeffrey C. Rathmell ◽  
Rebecca L. Elstrom ◽  
Ryan M. Cinalli ◽  
Craig B. Thompson

2003 ◽  
Vol 123 (3) ◽  
pp. 528-535 ◽  
Author(s):  
Kouji Kato ◽  
Kenjirou Kamezaki ◽  
Kazuya Shimoda ◽  
Akihiko Numata ◽  
Takashi Haro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document