A zero potential vorticity model of the North Brazilian Coastal Current

2016 ◽  
Author(s):  
Jiliang Xuan ◽  
Daji Huang ◽  
Thomas Pohlmann ◽  
Jian Su ◽  
Bernhard Mayer ◽  
...  

Abstract. The seasonal mean and synoptic fluctuation of the wintertime Taiwan Warm Current (TWC) were investigated using a well validated finite volume community ocean model. The spatial distribution and dynamics of the synoptic fluctuation were highlighted. The seasonal mean of the wintertime TWC has two branches: an inshore branch between the 30 and 100 m isobaths and an offshore branch between the 100 and 200 m isobaths. The Coriolis term is much larger than the inertia term and is almost balanced by the pressure gradient term in both branches, indicating the geostrophic balance of the mean current. Two areas with significant fluctuations of the TWC were identified during wintertime. One of the areas is located to the north of Taiwan with velocities varying in the cross-shore direction. These significant cross-shore fluctuations are driven by barotropic pressure gradients associated with the intrusion of the Taiwan Strait Current (TSC). When a larger TSC intrudes north of Taiwan, the isobaric slope tilts downward from south to north, leading to a cross-shore current from the coastal area to the offshore area. When the TSC intrusion is weak, the cross-shore current to the north of Taiwan is directed from offshore to inshore. The other area of significant fluctuation is located in the inshore area, extending in the region between the 30 and 100 m isobaths. The fluctuations are generally strong in the alongshore direction, in particular at the latitudes 26.5° N and 28° N where they are important for the local cross-shore transports. Wind affects the synoptic fluctuation through episodic events. When the northeasterly monsoon prevails, the southward Zhe-Min Coastal Current dominates the inshore area associated with a deepening of the mixed layer. When the winter monsoon is weakened or the southerly wind prevails, the northward TWC dominates in the inshore area.


2008 ◽  
Vol 602 ◽  
pp. 241-266 ◽  
Author(s):  
LARRY J. PRATT ◽  
KARL R. HELFRICH ◽  
DAVID LEEN

The stability of a hydraulically driven sill flow in a rotating channel with smoothly varying cross-section is considered. The smooth topography forces the thickness of the moving layer to vanish at its two edges. The basic flow is assumed to have zero potential vorticity, as is the case in elementary models of the hydraulic behaviour of deep ocean straits. Such flows are found to always satisfy Ripa's necessary condition for instability. Direct calculation of the linear growth rates and numerical simulation of finite-amplitude behaviour suggests that the flows are, in fact, always unstable. The growth rates and nonlinear evolution depend largely on the dimensionless channel curvature κ=2αg′/f2, where 2α is the dimensional curvature, g′ is the reduced gravity, and f is the Coriolis parameter. Very small positive (or negative) values of κ correspond to dynamically wide channels and are associated with strong instability and the breakup of the basic flow into a train of eddies. For moderate or large values of κ, the instability widens the flow and increases its potential vorticity but does not destroy its character as a coherent stream. Ripa's condition for stability suggests a theory for the final width and potential vorticity that works moderately well. The observed and predicted growth in these quantities are minimal for κ≥1, suggesting that the zero-potential-vorticity approximation holds when the channel is narrower than a Rossby radius based on the initial maximum depth. The instability results from a resonant interaction between two waves trapped on opposite edges of the stream. Interactions can occur between two Kelvin-like frontal waves, between two inertia–gravity waves, or between one wave of each type. The growing disturbance has zero energy and extracts zero energy from the mean. At the same time, there is an overall conversion of kinetic energy to potential energy for κ>0, with the reverse occurring for κ<0. When it acts on a hydraulically controlled basic state, the instability tends to eliminate the band of counterflow that is predicted by hydraulic theory and that confounds hydraulic-based estimates of volume fluxes in the field. Eddy generation downstream of the controlling sill occurs if the downstream value of κ is sufficiently small.


2017 ◽  
Vol 74 (3) ◽  
pp. 801-807 ◽  
Author(s):  
Joseph Egger ◽  
Klaus-Peter Hoinka ◽  
Thomas Spengler

Abstract Inversion of potential vorticity density with absolute vorticity and function η is explored in η coordinates. This density is shown to be the component of absolute vorticity associated with the vertical vector of the covariant basis of η coordinates. This implies that inversion of in η coordinates is a two-dimensional problem in hydrostatic flow. Examples of inversions are presented for (θ is potential temperature) and (p is pressure) with satisfactory results for domains covering the North Pole. The role of the boundary conditions is investigated and piecewise inversions are performed as well. The results shed new light on the interpretation of potential vorticity inversions.


Ocean Science ◽  
2007 ◽  
Vol 3 (1) ◽  
pp. 17-30 ◽  
Author(s):  
J. A. Polton ◽  
D. P. Marshall

Abstract. The circulation of the subtropical gyres can be decomposed into a horizontal recirculation along contours of constant Bernoulli potential and an overturning circulation across these contours. While the geometry and topology of Bernoulli contours is more complicated in the subtropical gyres than in the Southern Ocean, these subtropical overturning circulations are very much analogous to the overturning cell found in the Southern Ocean. This analogy is formalised through an exact integral constraint, including the rectified effects of transient eddies. The constraint can be interpreted either in terms of vertical fluxes of potential vorticity, or equivalently as an integral buoyancy budget for an imaginary fluid parcel recirculating around a closed Bernoulli contour. Under conditions of vanishing buoyancy and mechanical forcing, the constraint reduces to a generalised non-acceleration condition, under which the Eulerian-mean and eddy-induced overturning circulations exactly compensate. The terms in the integral constraint are diagnosed in an eddy-permitting ocean model in both the North Pacific subtropical gyre and the Southern Ocean. The extent to which the Eulerian-mean and eddy-induced overturning circulations compensate is discussed in each case.


2017 ◽  
Vol 74 (5) ◽  
pp. 1445-1454 ◽  
Author(s):  
Huaji Pang ◽  
Gang Fu

AbstractThree cases of explosively developing extratropical cyclones over eastern Asia are analyzed using ERA-Interim data. The morphological characteristics of the upper-tropospheric potential vorticity (PV) were examined. The common feature of all of these three cases is a hook-shaped high-PV streamer wrapping counterclockwise around the center of surface cyclones on the southern and eastern sides and an arch-shaped low-PV tongue that wrapped the high-PV hook head from the north. The hook-shaped high-PV tongue overlaps with the maximum centers of both the relative vorticity and static stability parameter, indicating the stratospheric nature of the PV source inside the hook-shaped high-PV tongue.The analysis indicates that there existed a deep tower of high PV above the surface cyclone at the time when these cyclones underwent explosive cyclogenesis. The high PV in the upper troposphere originates from the polar stratospheric PV reservoir associated with the tropopause-folding process. The high PV in the lower troposphere, however, is associated with the latent heat release, as nearly 70%–90% of the high-PV values in the lower troposphere reside in the region where the rainfall is the heaviest.


Sign in / Sign up

Export Citation Format

Share Document