A cell lineage analysis of gastrulation in the amphibian embryo Pleurodeles waltl

1992 ◽  
Vol 76 (2) ◽  
pp. 221-221
Author(s):  
Michel Delarue ◽  
Sara Sanchez ◽  
Kurt E. Johnson ◽  
Thierry Darribère ◽  
Jean-Claude Boucaut
Development ◽  
1987 ◽  
Vol 100 (1) ◽  
pp. 147-161 ◽  
Author(s):  
D.L. Shi ◽  
M. Delarue ◽  
T. Darribere ◽  
J.F. Riou ◽  
J.C. Boucaut

The capacity for extension of the dorsal marginal zone (DMZ) in Pleurodeles waltl gastrulae was studied by scanning electron microscopy and grafting experiments. At the onset of gastrulation, the cells of the animal pole (AP) undergo important changes in shape and form a single layer. As gastrulation proceeds, the arrangement of cells also changes in the noninvoluted DMZ: radial intercalation leads to a single layer of cells. Grafting experiments involving either AP or DMZ explants were performed using a cell lineage tracer. When rotated 90 degrees or 180 degrees, grafted DMZ explants were able to involute normally and there was extension according to the animal-vegetal axis of the host. In contrast, neither single nor bilayered explants from AP involutes completely, and neither extends when grafted in place of the DMZ. Furthermore, when inside of the host, these AP grafts curl up and inhibit the closure of the blastopore. Once transplanted to the AP region, the DMZ showed no obvious autonomous extension. DMZs cultured in vitro showed little extension and this only from the late gastrula stage onward. Removal of blastocoel roof blocked involution to a varied extent, depending on the developmental stage of the embryos. From these results, it is argued that differences could well exist in the mechanism of gastrulation between anuran and urodele embryos. That migrating mesodermal cells play a major role in urodele gastrulation is discussed.


2017 ◽  
Author(s):  
Shi V. Liu

ABSTRACTCell lineage analysis holds important stakes for understanding heredity and cell differentiation. Conventional cell lineages are reconstructed according to a cell division doctrine of one mother cell dividing into two daughter cells. An alternative cell lineage reconstruction method followed a cell reproduction discovery of multiple daughter cells reproduced from a same mother cell. To see which reconstruction method reflects reality of early embryogenesis of Caenorhabditis elegans, a side-by-side comparison was made between two methods. Here I show cell division-based lineage distorted reality and failed in revealing any true genealogy. Cell reproduction – based lineage conformed to reality with exact same number of cells in every developmental stage under examination and showed clear genealogical relationship. A paradigm-shift from cell division-to cell reproduction-based cell lineage analysis is necessary for correct understanding of developmental biology and will lead to a revolution in cell biology and life science.


1998 ◽  
Vol 353 (1370) ◽  
pp. 925-933 ◽  
Author(s):  
Nicholas A. Wright

The main pathways of epithelial differentiation in the intestine, Paneth, mucous, endocrine and columnar cell lineages are well recognized. However, in abnormal circumstances, for example in mucosal ulceration, a cell lineage with features distinct from these emerges, which has often been dismissed in the past as ‘pyloric’ metaplasia, because of its morphological resemblance to the pyloric mucosa in the stomach. However, we can conclude that this cell lineage has a defined phenotype unique in gastrointestinal epithelia, has a histogenesis that resembles that of Brunner's glands, but acquires a proliferative organization similar to that of the gastric gland. It expresses several peptides of particular interest, including epidermal growth factor, the trefoil peptides TFF1, TFF2, TFF3, lysozyme and PSTI. The presence of this lineage also appears to cause altered gene expression in adjacent indigenous cell lineages. We propose that this cell lineage is induced in gastrointestinal stem cells as a result of chronic mucosal ulceration, and plays an important part in ulcer healing; it should therefore be added to the repertoire of gastrointestinal stem cells.


Blood ◽  
2012 ◽  
Vol 119 (19) ◽  
pp. 4349-4357 ◽  
Author(s):  
Fanny Guimont-Desrochers ◽  
Geneviève Boucher ◽  
Zhongjun Dong ◽  
Martine Dupuis ◽  
André Veillette ◽  
...  

Abstract The cell lineage origin of IFN-producing killer dendritic cells (IKDCs), which exhibit prominent antitumoral activity, has been subject to debate. Although IKDCs were first described as a cell type exhibiting both plasmacytoid DC and natural killer (NK) cell properties, the current view reflects that IKDCs merely represent activated NK cells expressing B220, which were thus renamed B220+ NK cells. Herein, we further investigate the lineage relation of B220+ NK cells with regard to other NK-cell subsets. We surprisingly find that, after adoptive transfer, B220− NK cells did not acquire B220 expression, even in the presence of potent activating stimuli. These findings strongly argue against the concept that B220+ NK cells are activated NK cells. Moreover, we unequivocally show that B220+ NK cells are highly proliferative and differentiate into mature NK cells after in vivo adoptive transfer. Additional phenotypic, functional, and transcriptional characterizations further define B220+ NK cells as immediate precursors to mature NK cells. The characterization of these novel attributes to B220+ NK cells will guide the identification of their ortholog in humans, contributing to the design of potent cancer immunotherapies.


BioEssays ◽  
1984 ◽  
Vol 1 (1) ◽  
pp. 5-8 ◽  
Author(s):  
Jonathan M. W. Slack

Genome ◽  
1989 ◽  
Vol 31 (2) ◽  
pp. 625-637 ◽  
Author(s):  
Jonathan Hodgkin ◽  
Andrew D. Chisholm ◽  
Michael M. Shen

Sex determination in Caenorhabditis elegans involves a cascade of major regulatory genes connecting the primary sex determining signal, X chromosome dosage, to key switch genes, which in turn direct development along either male or female pathways. Animals with one X chromosome (XO) are male, while animals with two X chromosomes (XX) are hermaphrodite: hermaphrodite development occurs because the action of the regulatory genes is modified in the germ line so that both sperm and oocytes are made inside a completely female soma. The regulatory genes are being examined by both genetic and molecular means. We discuss how these major genes, in particular the last switch gene in the cascade, tra-1, might regulate the many different sex-specific events that occur during the development of the hermaphrodite and of the male.Key words: nematode, Caenorhabditis elegans, sex determination, sexual differentiation, cell lineage analysis.


The homeotic genes specify the development of specific groups of precursor cells. They establish the correct state of determination of the different primordia. Cell lineage analysis has been particularly useful in studying the mode of action of homeotic genes. The main findings are: (i) most, perhaps all, the homeotic genes are required by every cell of the corresponding primordium (that is, they are cell autonomous); (ii) they act on anatomical units defined by compartment boundaries and including one or more compartments, (iii) most, but not all, homeotic genes are required until the end of the larval period; (iv) the homeotic genes act in combination so that the appropriate development of a given primordium may be established by the contribution of several homeotic genes.


1993 ◽  
Vol 24 (2) ◽  
pp. 146-161 ◽  
Author(s):  
Nicole M. Le Douarin ◽  
Elisabeth Dupin

Development ◽  
1991 ◽  
Vol 113 (Supplement_1) ◽  
pp. 39-46 ◽  
Author(s):  
Liam Dolan ◽  
R. Scott Poethig

Leaf shape in cotton is regulated by the developmental age of the shoot and by several major genes that affect leaf lobing. The effect of these factors was investigated by allometric analysis, cell lineage analysis, and by studying the expression of the leaf shape mutation, Okra, in genetic mosaics. Allometric analysis of leaf growth suggests that leaf shape is determined during the initiation of the primordium rather than during the expansion phase of leaf growth. Clonal analysis demonstrates that both the rate and duration of cell division are fairly uniform throughout the leaf. Cells in the marginal region of the developing cotton leaf contribute more to the growth of the lamina than they do in tobacco. The Okra mutation acts early in the development of a leaf and appears to accentuate a developmental pattern that is also responsible for heteroblastic variation in leaf shape. The expression of this mutation in genetic mosaics demonstrates that its effect does not diffuse laterally within the leaf primordium.


Sign in / Sign up

Export Citation Format

Share Document