scholarly journals Comparing Cell Division- and Cell Reproduction-based Cell Lineage Analysis for Early Embryogenesis of Caenorhabditis elegans

2017 ◽  
Author(s):  
Shi V. Liu

ABSTRACTCell lineage analysis holds important stakes for understanding heredity and cell differentiation. Conventional cell lineages are reconstructed according to a cell division doctrine of one mother cell dividing into two daughter cells. An alternative cell lineage reconstruction method followed a cell reproduction discovery of multiple daughter cells reproduced from a same mother cell. To see which reconstruction method reflects reality of early embryogenesis of Caenorhabditis elegans, a side-by-side comparison was made between two methods. Here I show cell division-based lineage distorted reality and failed in revealing any true genealogy. Cell reproduction – based lineage conformed to reality with exact same number of cells in every developmental stage under examination and showed clear genealogical relationship. A paradigm-shift from cell division-to cell reproduction-based cell lineage analysis is necessary for correct understanding of developmental biology and will lead to a revolution in cell biology and life science.

2005 ◽  
Vol 171 (2) ◽  
pp. 267-279 ◽  
Author(s):  
Anjon Audhya ◽  
Francie Hyndman ◽  
Ian X. McLeod ◽  
Amy S. Maddox ◽  
John R. Yates ◽  
...  

Cytokinesis completes cell division and partitions the contents of one cell to the two daughter cells. Here we characterize CAR-1, a predicted RNA binding protein that is implicated in cytokinesis. CAR-1 localizes to germline-specific RNA-containing particles and copurifies with the essential RNA helicase, CGH-1, in an RNA-dependent fashion. The atypical Sm domain of CAR-1, which directly binds RNA, is dispensable for CAR-1 localization, but is critical for its function. Inhibition of CAR-1 by RNA-mediated depletion or mutation results in a specific defect in embryonic cytokinesis. This cytokinesis failure likely results from an anaphase spindle defect in which interzonal microtubule bundles that recruit Aurora B kinase and the kinesin, ZEN-4, fail to form between the separating chromosomes. Depletion of CGH-1 results in sterility, but partially depleted worms produce embryos that exhibit the CAR-1–depletion phenotype. Cumulatively, our results suggest that CAR-1 functions with CGH-1 to regulate a specific set of maternally loaded RNAs that is required for anaphase spindle structure and cytokinesis.


Genome ◽  
1989 ◽  
Vol 31 (2) ◽  
pp. 625-637 ◽  
Author(s):  
Jonathan Hodgkin ◽  
Andrew D. Chisholm ◽  
Michael M. Shen

Sex determination in Caenorhabditis elegans involves a cascade of major regulatory genes connecting the primary sex determining signal, X chromosome dosage, to key switch genes, which in turn direct development along either male or female pathways. Animals with one X chromosome (XO) are male, while animals with two X chromosomes (XX) are hermaphrodite: hermaphrodite development occurs because the action of the regulatory genes is modified in the germ line so that both sperm and oocytes are made inside a completely female soma. The regulatory genes are being examined by both genetic and molecular means. We discuss how these major genes, in particular the last switch gene in the cascade, tra-1, might regulate the many different sex-specific events that occur during the development of the hermaphrodite and of the male.Key words: nematode, Caenorhabditis elegans, sex determination, sexual differentiation, cell lineage analysis.


Development ◽  
1994 ◽  
Vol 120 (3) ◽  
pp. 505-514 ◽  
Author(s):  
I.A. Hope

Promoter trapping has identified a gene, pes-1, which is expressed during C. elegans embryogenesis. The beta-galactosidase expression pattern, directed by the pes-1/lacZ fusion through which this gene was cloned, has been determined precisely in terms of the embryonic cell lineage and has three components. One component is in a subset of cells of the AB founder cell lineage during early embryogenesis, suggesting pes-1 may be regulated both by cell autonomous determinants and by intercellular signals. Analysis of cDNA suggests pes-1 has two sites for initiation of transcription and the two transcripts would encode related but distinct proteins. The predicted PES-1 proteins have homology to the fork head family of transcription factors and therefore may have important regulatory roles in early embryogenesis.


1987 ◽  
Vol 105 (5) ◽  
pp. 2123-2135 ◽  
Author(s):  
A A Hyman ◽  
J G White

The establishment of cell division axes was examined in the early embryonic divisions of Caenorhabditis elegans. It has been shown previously that there are two different patterns of cleavage during early embryogenesis. In one set of cells, which undergo predominantly determinative divisions, the division axes are established successively in the same orientation, while division axes in the other set, which divide mainly proliferatively, have an orthogonal pattern of division. We have investigated the establishment of these axes by following the movement of the centrosomes. Centrosome separation follows a reproducible pattern in all cells, and this pattern by itself results in an orthogonal pattern of cleavage. In those cells that divide on the same axis, there is an additional directed rotation of pairs of centrosomes together with the nucleus through well-defined angles. Intact microtubules are required for rotation; rotation is prevented by inhibitors of polymerization and depolymerization of microtubules. We have examined the distribution of microtubules in fixed embryos during rotation. From these and other data we infer that microtubules running from the centrosome to the cortex have a central role in aligning the centrosome-nuclear complex.


1977 ◽  
Vol 14 (3) ◽  
pp. 584-590 ◽  
Author(s):  
F. P. Kelly

Black and white cells are positioned at the vertices of a rectangular lattice. When a cell division occurs, the daughter cells are of the same colour as the parent cell; one of them replaces an adjacent cell and the other remains in the position of the parent cell. In one variant of the model it is assumed that whenever a white cell appears at the origin it is transformed into a black cell; apart from this the black and white cells are equally competitive and in particular they divide at the same rate. Initially, only the cell at the origin is black. The asymptotic behaviour of the black clone is investigated.


2018 ◽  
Author(s):  
Yohei Kikuchi ◽  
Akatsuki Kimura

AbstractMicroinjection is a useful method in cell biology, with which exogenous substances are introduced into a cell in a location- and time-specific manner. The Caenorhabditis elegans embryo is an important model system for cell and developmental biology. Applying microinjection to the C. elegans embryo had been difficult due to the rigid eggshell surrounding the embryo. In 2013, microinjection method using a carbon-coated quartz needle for the C. elegans embryo was reported. To prepare the needle, unfortunately, special equipment is required and thus a limited number of researchers can use this method. In this study, we established a method for the microinjection of drugs, dyes, and microbeads into the C. elegans embryo using an uncoated glass needle that can be produced in a general laboratory. This method enabled us to easily detect cell lineage up to adult stages by injecting a fluorescent dye into a blastomere. We also found a cell-non-autonomous control mechanism of cell adhesion; specifically, the injection of an actin inhibitor into one cell at the 2-cell stage enhanced adhesion between daughter cells of the other cell. Our microinjection method is expected to be used for broad studies and could facilitate various discoveries using C. elegans.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 271 ◽  
Author(s):  
Roberta Fraschini

The duplication cycle is the fascinating process that, starting from a cell, results in the formation of two daughter cells and it is essential for life. Cytokinesis is the final step of the cell cycle, it is a very complex phase, and is a concert of forces, remodeling, trafficking, and cell signaling. All of the steps of cell division must be properly coordinated with each other to faithfully segregate the genetic material and this task is fundamental for generating viable cells. Given the importance of this process, molecular pathways and proteins that are involved in cytokinesis are conserved from yeast to humans. In this review, we describe symmetric and asymmetric cell division in animal cell and in a model organism, budding yeast. In addition, we illustrate the surveillance mechanisms that ensure a proper cell division and discuss the connections with normal cell proliferation and organs development and with the occurrence of human diseases.


1983 ◽  
Vol 61 (1) ◽  
pp. 273-287
Author(s):  
K.K. Hjelm

The relative daughter cell volume (RDCV) values for Tetrahymena pyriformis were determined at division on live cells. It was found that the anterior cell is generally larger than the posterior cell, and that the RDCV values are distributed in groups 5–6% apart. The RDCV value was found to be independent of predivision cell volume, indicating that the mother cell is divided into proportional volumes. The cells seem, however, not to assess volume directly but rather a parameter related to the cell volume. Furthermore, the RDCV value was found to increase during cell division, so that the final value is not reached until actual separation of daughter cells. It is suggested that the division furrow is positioned so that the area of the cell surface lying between the old oral apparatus and the posterior pole of the cell is divided into equal parts. It is further suggested that several alternative values of the RDCV are possible, only one of which is expressed in each cell. The early division furrow is placed anteriorly to its final position, and its location is adjusted during cytokinesis.


1982 ◽  
Vol 54 (1) ◽  
pp. 173-191 ◽  
Author(s):  
R. A. CRAIGIE ◽  
T. CAVALIER-SMITH

Chlamydomonas reinhardii divides by multiple fission to produce 2n daughter cells per division burst, where n is an integer. By separating predivision cells from synchronous cultures into fractions of differing mean cell volumes, and electronically measuring the numbers and volume distributions of the daughter cells produced by the subsequent division burst, we have shown that n is determined by the volume of the parent cell. Control of n can occur simply, if after every cell division the daughter cells monitor their volume and divide again if, and only if, their volume is greater than a fixed minimum value. In cultures synchronized by 12-h light/12-h dark cycles, the larger parent cells divide earlier in the dark period than do smaller cells. This has been shown by two independent methods: (1) by separating cells into different size fractions by Percoll density-gradient centrifugation and using the light microscope to see when they divide; and (2) by studying changes in the cell volume distribution of unfractioned cultures. Since daughter cells remain within the mother-cell wall for some hours after cell division, and cell division causes an overall swelling of the mother-cell wall, the timing of division can be determined electronically by measuring this increase in cell volume that occurs in the dark period in the absence of growth; we find that cells at the large end of the size distribution range undergo this swelling first, and are then followed by successively smaller size fractions. A simple model embodying a sizer followed by a timer gives a good quantitative fit to these data for 12-h light/12-h dark cycles if cell division occurs 12-h after attaining a critical volume of approximately 140 μm3. However, this simple model is called into question by our finding that alterations in the length of the light period alter the rate of progress towards division even of cells that have attained their critical volume. We discuss the relative roles of light and cell volume in the control of division timing in the Chlamydomonas cell cycle.


1992 ◽  
Vol 76 (2) ◽  
pp. 221-221
Author(s):  
Michel Delarue ◽  
Sara Sanchez ◽  
Kurt E. Johnson ◽  
Thierry Darribère ◽  
Jean-Claude Boucaut

Sign in / Sign up

Export Citation Format

Share Document