Muscle and plasma amino acids during semi-starvation in normal subjects: hypocaloric glucose vs. amino acid infusions

1985 ◽  
Vol 4 (1) ◽  
pp. 21-27 ◽  
Author(s):  
K.M. Gil ◽  
P. Furst ◽  
J. Wood ◽  
J. Askanazi ◽  
D.H. Elwyn ◽  
...  
1973 ◽  
Vol 28 (7-8) ◽  
pp. 449-451 ◽  
Author(s):  
G. Peter ◽  
H. Angst ◽  
U. Koch

Free and protein-bound amino acids in serum and scales were investigated. In serum the bound amino acids of psoriatics are significantly higher with exception of Pro, Met, Tyr and Phe in contrast to normal subjects. For free amino acids the differences between normal subjects and psoriatics found in serum and scales are not significant. Results are discussed in relation to the single amino acids and the biochemical correlations are outlined which takes the pathological process as a basis.


PEDIATRICS ◽  
1970 ◽  
Vol 45 (5) ◽  
pp. 782-791
Author(s):  
Ralph D. Feigin ◽  
Morey W. Haymond

Blood amino acids were obtained every 4 hours for 24 hours from 46 full-term infants who were between 1 hour and 120 hours of age when first sampled. Blood was also obtained at 0400 and 1200 hours on the same day from 10 additional infants, aged 48 to 72 hours at the time of study, for more detailed analysis of individual blood amino acids. Periodicity of total blood amino acids was demonstrated as early as the first day of life in some infants. This blood amino acid rhythmicity was similar but not identical to that previously observed in adults and older children. Concentrations of blood amino acids were minimal at 0400 hours and peaked between 1200 and 2000 hours. Periodicity of individual blood amino acids was similar to that for total blood amino acids but much less consistent. The presence of periodicity for plasma tyrosine was demonstrable even in two patients with neonatal tyrosinemia. Since plasma amino acids vary normally as a function of time, "normal values" must be standardized for time of day.


2001 ◽  
Vol 281 (2) ◽  
pp. E349-E356 ◽  
Author(s):  
Mazen J. Hamadeh ◽  
L. John Hoffer

Six normal men consumed a mixed test meal while adapted to high (1.5 g · kg−1· day−1) and low (0.3 g · kg−1· day−1) protein intakes. They completed this protocol twice: when the test meals included 3 mg/kg of [15N]alanine ([15N]Ala) and when they included 30 mg/kg of intrinsically labeled [15N] Spirulina platensis([15N]SPI). Six subjects with insulin-dependent diabetes mellitus (IDDM) receiving conventional insulin therapy consumed the test meal with added [15N]Ala while adapted to their customary high-protein diet. Protein restriction increased serum alanine, glycine, glutamine, and methionine concentrations and reduced those of leucine. Whether the previous diet was high or low in protein, there was a similar increase in serum alanine, methionine, and branched-chain amino acid concentrations after the test meal and a similar pattern of15N enrichment in serum amino acids for a given tracer. When [15N]Ala was included in the test meal,15N appeared rapidly in serum alanine and glutamine, to a minor degree in leucine and isoleucine, and not at all in other circulating amino acids. With [15N]SPI, there was a slow appearance of the label in all serum amino acids analyzed. Despite the different serum amino acid labeling, protein restriction reduced the postmeal transfer of dietary15N in [15N]Ala or [15N]SPI into [15N]urea by similar amounts (38 and 43%, respectively, not significant). The response of the subjects with IDDM was similar to that of the normal subjects. Information about adaptive reductions in dietary amino acid catabolism obtained by adding [15N]Ala to a test meal appears to be equivalent to that obtained using an intrinsically labeled protein tracer.


2004 ◽  
Vol 134 (9) ◽  
pp. 2182-2190 ◽  
Author(s):  
Xinfu Guan ◽  
Brian J. Bequette ◽  
Pao K. Ku ◽  
Robert J. Tempelman ◽  
Nathalie L. Trottier

1973 ◽  
Vol 103 (4) ◽  
pp. 608-617 ◽  
Author(s):  
Y. Peng ◽  
J. Gubin ◽  
A. E. Harper ◽  
M. G. Vavich ◽  
A. R. Kemmerer

1959 ◽  
Vol 197 (4) ◽  
pp. 873-879 ◽  
Author(s):  
Roland A. Coulson ◽  
Thomas Hernandez

The rate of renal deamination of 18 amino acids was determined by injecting them into alligators and measuring the ammonia excreted. Not only did glycine, alanine, glutamine and leucine account for nearly half of the plasma amino acids, they were also deaminated more rapidly than any of the others. In view of this it was concluded that these four amino acids are the natural precursors of urinary NH3 in the alligator. Increased NH3 and CO2 excretion following glycine injections resulted in increased renal reabsorption of Na and Cl when NaCl was injected and increased Na reabsorption when NaHCO3 or Na phosphate solutions were injected. The fact that excess NH4HCO3 excretion enhances salt reabsorption independent of plasma pH makes it probable that the excretion of N is the chief function of the ammonia mechanism and that salt conservation is incidental. Insulin decreased the plasma amino acid level and drastically reduced the NH3 excretion. With the decrease in ammonia, NaCl and NaHCO3 were excreted in increased amounts.


1983 ◽  
Vol 3 (1_suppl) ◽  
pp. 10-12 ◽  
Author(s):  
Oimitrios G. Oreopoulos ◽  
Errol Marliss G. Harvey ◽  
Anderson Arie Oren ◽  
Nicholas Oombros Paul ◽  
Williams Ramesh Khanna ◽  
...  

As a result of a combination of a decreased appetite with increased nutrient losses in the dialysate, a number of CAPO patients may develop malnutrition. A decrease in appetite is also observed in normal animals undergoing CAPO which suggests that some factors related to CAPO influence appetite so that these animals eat less. In addition to protein losses, CAPO patients are losing approximately two grams of amino acids a day, and they have plasma amino acid abnormalities similar to those produced by malnutrition and uremia. An amino acid-containing dialysis solution (2%) is an effective solution with respect to ultrafiltration and solute removal. Amino acids can be absorbed by the peritoneal route and produce an increase in plasma amino acids to levels similar to those observed after a protein meal. These observations indicate that administration of amino acids via the peritoneal route may prevent or correct malnutrition developed in patients on CAPO.


2001 ◽  
Vol 81 (2) ◽  
pp. 229-235 ◽  
Author(s):  
J. C. Plaizier ◽  
J. -P. Walton ◽  
B. W. McBride

The objectives of this study were to examine the effect of supplying post-ruminal L-glutamine in mid-lactation Holstein dairy cows on plasma amino acid profile, dry matter intake, milk yield and milk composition. The experiment was designed as a 4 × 4 Latin square with four 2-wk periods. Cows were continuously infused post-ruminally with graded levels of L-glutamine (L-Gln) for 5 consecutive days during the second week of each period. During the last 24 h of the infusion, blood plasma was collected every 6 h for the determination of plasma amino acid concentrations. Plasma Gln concentration increased (P < 0.05) with increasing L-Gln daily infusions. Infusion of 0, 100, 200, and 300 g d–1 resulted in blood plasma Gln concentrations of 289.5, 299.2, 356.4 and 386.2 mmol L–1, respectively. The level of Gln infusion also resulted in a decrease in the blood plasma concentration of phenylalanine, but the concentrations of all other amino acids were not affected. The administration of Gln did not affect dry matter intake, milk yield and milk composition. Key words: Post-ruminal, L-glutamine, plasma amino acids, milk constituents


2008 ◽  
Vol 101 (2) ◽  
pp. 295-303 ◽  
Author(s):  
Margriet A. B. Veldhorst ◽  
Arie G. Nieuwenhuizen ◽  
Ananda Hochstenbach-Waelen ◽  
Klaas R. Westerterp ◽  
Marielle P. K. J. Engelen ◽  
...  

The present study compared the effects of a high- and normal-casein-protein breakfast on satiety, ‘satiety’ hormones, plasma amino acid responses and subsequent energy intake. Twenty-five healthy subjects (BMI 23·9 (sem 0·3) kg/m2; age 22 (sem 1) years) received a subject-specific standardised breakfast (20 % of daily energy requirements): a custard with casein as the single protein source with either 10, 55 and 35 (normal-casein breakfast) or 25, 55 and 20 (high-casein breakfast) % of energy (En%) from protein, carbohydrate and fat respectively in a randomised, single-blind design. Appetite profile (visual analogue scale; VAS), plasma glucose, insulin, glucagon-like peptide 1, ghrelin and amino acid concentrations were determined for 4 h; here the sensitive moment in time for lunch was determined. Subjects came for a second set of experiments and received the same custards for breakfast, and an ad libitum lunch was offered at 180 min after breakfast; energy intake was assessed. There were increased scores of fullness and satiety after the 25 En% casein-custard compared with the 10 En% casein-custard, particularly at 180 min (26 (sem 4) v. 11 (sem 5) mm VAS; P < 0·01) and 240 min (13 (sem 5) v. − 1 (sem 5) mm VAS; P < 0·01). This coincided with prolonged elevated plasma amino acid concentrations; total amino acids and branched-chain amino acids were higher after the 25 En% casein-custard compared with the 10 En% casein-custard at 180 and 240 min (P < 0·001). There was no difference in energy intake (3080 (sem 229) v. 3133 (sem 226) kJ for 25 En% and 10 En% respectively; NS) from the ad libitum lunch. In conclusion, a breakfast with 25 % of energy from casein is rated as being more satiating than a breakfast with 10 % of energy from casein at 3 and 4 h after breakfast, coinciding with prolonged elevated concentrations of plasma amino acids, but does not reduce subsequent energy intake.


Sign in / Sign up

Export Citation Format

Share Document