An improved model for the influence of cosmic rays and high energy particles on the ionosphere and middle atmosphere

1996 ◽  
Vol 18 (3) ◽  
pp. 23-27 ◽  
Author(s):  
P.I.Y. Velinov ◽  
L.N. Mateev ◽  
C.W. Spassov
1981 ◽  
Vol 94 ◽  
pp. 365-366
Author(s):  
J. Pérez-Peraza ◽  
S. S. Trivedi

The role of Coulombian energy losses in cosmic ray physics is generally over simplified by using the Bethe-Block formulation which does not depend explicitly on the temperature of the medium. The role of low energy particles is usually neglected, as a result of the over estimation of losses when the temperature of the medium is ignored. A deep analysis of Coulombian losses may raise the importance of these particles in the dynamics of the Galaxy. In fact, the deceleration of these particles is determined by charge interchange processes with the target ions and electrons, which energy dependence is roughly the inverse of ionisation losses. Even high energy particles may be subject to this kind of deceleration if the temperature is very high. The consideration of Coulombian losses through all energy ranges with explicit dependence on the temperature has been discussed by Perez and Lara (1979): a fully ionized medium of hydrogen has been assumed to prevail in most of cosmic ray sources. One kind of the implications is the determination of particle composition. It is claimed that a given kind of ion is preferentially accelerated or depleted depending on whether the acceleration is higher or lower than the deceleration rate at the beginning of the acceleration of thermal material. Species which undergo depletion are accelerated only if their energy is higher than that for which both rates are equated (Ec,E′c and E′c′) in such a way that only those of the hot tails of their thermal distributions are effectively accelerated. These will appear depleted relative to other species which are free accelerated because their deceleration rates at low energies are lower than the acceleration rate. It can be noted in the next figures, that if both rates would not intersect at the beginning of the acceleration, they would not join at higher energies because the acceleration rate grows faster with energy than the deceleration rate. Three arbitrary acceleration rates are used for illustration: Fermi-2nd order (αβW), Betatron or adiabatic heating (αβ2W) and shock wave acceleration (αW), where α, β and W are the efficiency, the particles velocity and the total energy per nucleon respectively. In Fig. 1 it can be seen that this selective acceleration relative to Coulombian losses is defined at different energy levels depending on the kind of acceleration involved. Since the main effect of the temperature on the losses at the beginning of the acceleration is through the local charge states of the ions, the sequence of energy losses among different species is highly assorted. This is translated in a great amount of possibilities of particle enhancements and depletions according to the temperature of the source and the kind of acceleration operating therein. If particles under go acceleration in a fully stripped state, the sequence of losses at all energy levels is such that the heavy elements are depleted in relation with the lighter ones; same is the situation, what-ever the initial charge state, for high energy particles in the range of ionisation. It may be concluded, on basis to the observational enhancement of heavy cosmic rays, that hot regions are not likely sources, and that acceleration initiates from thermal energies. On Fig. 2 it is illustrated the enhancement of Fe over 0 in solar flare conditions, on basis to the charge states as given by Jordan (1969). If α < 2.71 s−1 both elements would be depleted, whereas if α>3.45 s−1 both would be preferentially accelerated.


2013 ◽  
Vol 53 (A) ◽  
pp. 703-706
Author(s):  
Roberto Aloisio

We discuss the problem of ultra high energy particles propagation in astrophysical backgrounds. We present two different computational schemes based on kinetic and Monte Carlo approaches. The kinetic approach is an analytical computation scheme based on the hypothesis of continuos energy losses while the Monte Carlo scheme takes into account also the stochastic nature of particle interactions. These schemes, which give quite reliable results, enable the computation of fluxes keeping track of the different primary and secondary components, providing a fast and useful workbench for studying Ultra High Energy Cosmic Rays.


2007 ◽  
Vol 22 (21) ◽  
pp. 1533-1551 ◽  
Author(s):  
JÖRG R. HÖRANDEL

The energies of cosmic rays, fully ionized charged nuclei, extend over a wide range up to 1020 eV. A particularly interesting energy region spans from 1014 to 1018 eV, where the all-particle energy spectrum exhibits two interesting structures, the "knee" and the "second knee". An explanation of these features is thought to be an important step in understanding the origin of the high-energy particles. Recent results of air shower experiments in this region are discussed. Special attention is drawn to explain the principle of air shower measurements — a simple Heitler model of (hadronic) air showers is developed.


2008 ◽  
Vol 4 (S259) ◽  
pp. 519-528 ◽  
Author(s):  
Klaus Dolag ◽  
F. Stasyszyn ◽  
J. Donnert ◽  
R. Pakmor

AbstractIn galaxy clusters, non-thermal components such as magnetic field and high energy particles keep a record of the processes acting since early times till now. These components play key roles by controlling transport processes inside the cluster atmosphere and beyond and therefore have to be understood in detail by means of numerical simulations. The complexity of the intra cluster medium revealed by multi-frequency observations demonstrates that a variety of physical processes are in action and must be included properly to produce accurate and realistic models. Confronting the predictions of numerical simulations with observations allows us to validate different scenarios about origin and evolution of large scale magnetic fields and to investigate their role in transport and acceleration processes of cosmic rays.


2009 ◽  
Vol 5 (H15) ◽  
pp. 461-463 ◽  
Author(s):  
Klaus Dolag

AbstractIn galaxy clusters, non-thermal components such as magnetic field and high energy particles keep a record of the processes acting since early times till now. These components play key roles by controlling transport processes inside the cluster atmosphere and beyond and therefore have to be understood in detail by means of numerical simulations. The complexity of the intra cluster medium revealed by multi-frequency observations demonstrates that a variety of physical processes are in action and must be included properly to produce accurate and realistic models. Confronting the predictions of numerical simulations with observations allows us to validate different scenarios about origin and evolution of large scale magnetic fields and to investigate their role in transport and acceleration processes of cosmic rays.


1981 ◽  
Vol 94 ◽  
pp. 51-52
Author(s):  
G.G.C. Palumbo ◽  
G. Cavallo

Theories on the Origin of Cosmic Rays almost invariably invoke the Supernova (SN) phenomenon in its early phases as the cause for production and acceleration of high energy particles. So far only optical information about SNe has been available and from it there is no direct evidence of Cosmic Rays. It is not surprising then that models of Cosmic Ray production are still rich in free parameters. On April 19th 1979 a very bright (~12 mag) SN, labelled 1979c, was detected in the relatively nearby galaxy (~16 Mpc) M 100 (≡NGC 4321). This galaxy, incidentally has produced 4 SNe in 78 years. Event 1979c was followed quite intensively in the optical and UV (with IUE) regions of the spectrum as well as observed at radio and X-ray frequencies. A detailed account of these observations is in press (Panagia et al. 1980). Here we summarize only very briefly the results relevant to the present discussion.


Author(s):  
Ralf Kaiser

Cosmic-ray muography uses high-energy particles for imaging applications that are produced by cosmic rays in particle showers in the Earth's atmosphere. This technology has developed rapidly over the last 15 years, and it is currently branching out into many different applications and moving from academic research to commercial application. As in any new sub-field of research and technology, the nomenclature of the field itself is still developing and has not settled yet as new aspects of the field are appearing and with them the terms to describe them. This overview of the field of muography is not going to focus on the physics, on the reconstruction algorithms or on the involved detector technology. Detailed papers on these aspects are included in this issue of Philosophical Transactions A and I will refer to them. Instead, I will give an overview of the field as it is now, in 2018, and try to give an idea of the future directions in this field as I see them. This article is part of the Theo Murphy meeting issue ‘Cosmic-ray muography’.


Sign in / Sign up

Export Citation Format

Share Document