γ-Fe2O3 nanoparticle zero field cooled magnetization: Variation of the superparamagnetic θsp Curie temperature with the measurement geometry and the applied field

1995 ◽  
Vol 140-144 ◽  
pp. 369-370 ◽  
Author(s):  
M. Godinho ◽  
J.L. Dormann ◽  
M. Noguès ◽  
P. Prené ◽  
E. Tronc ◽  
...  
1964 ◽  
Vol 42 (4) ◽  
pp. 657-677 ◽  
Author(s):  
E. Sawatzky ◽  
M. Bloom

The transition temperature TN of CoCl2∙6H2O was measured as a function of applied field and crystal orientation using the proton resonance lines, since they are very sensitive functions of temperature near TN. TN was found to be a complicated function of the applied field and crystal orientation, which cannot be described by the molecular field approximation. The transition is gradual rather than sudden and coexistence of the NMR spectra associated with the paramagnetic and antiferromagnetic phases was observed over a temperature region of about 10−2 °K. Short-range order effects were observed near TN in the form of anomalous broadening of the magnetic resonance lines. The magnetic susceptibility in zero field was measured along the preferred axis of antiferromagnetic alignment. This, together with specific heat data from published literature, was used to show a mutual consistency between thermodynamic variables and the dependence of TN on H in low fields as obtained by NMR. The treatment follows that of Buckingham and Fairbank for the λ transition in liquid helium. The sublattice magnetization in the antiferromagnetic phase was measured as a function of temperature. It was found to depend logarithmically on (TN – T), for all values of applied field.


2006 ◽  
Vol 941 ◽  
Author(s):  
Francesco Dalla Longa ◽  
Dion Boesten ◽  
Harm H.J.E. Kicken ◽  
Wim J.M. de Jonge ◽  
Bert Koopmans

ABSTRACTA novel model for ultrafast laser-induced magnetization dynamics is analyzed. Equilibration of the magnetic system is described by including electron-phonon scattering events with a finite spin flip probability. Recently, we demonstrated that such a model predicts a direct relation between the demagnetization time and the Gilbert damping. Here we present numerical simulations based on the same Hamiltonian, but including the presence of an external applied field. Thereby, reversal of the magnetization after heating above the Curie temperature (Tc) can be modeled. We demonstrate that magnetization reversal can be achieved even if the lattice temperature stays below Tc.


Entropy ◽  
2020 ◽  
Vol 22 (8) ◽  
pp. 862
Author(s):  
Ildus F. Sharafullin ◽  
Hung T. Diep

We present in this paper the effects of Dzyaloshinskii–Moriya (DM) magneto–electric coupling between ferroelectric and magnetic interface atomic layers in a superlattice formed by alternate magnetic and ferroelectric films. We consider two cases: magnetic and ferroelectric films have the simple cubic lattice and the triangular lattice. In the two cases, magnetic films have Heisenberg spins interacting with each other via an exchange J and a DM interaction with the ferroelectric interface. The electrical polarizations of ±1 are assumed for the ferroelectric films. We determine the ground-state (GS) spin configuration in the magnetic film and study the phase transition in each case. In the simple cubic lattice case, in zero field, the GS is periodically non collinear (helical structure) and in an applied field H perpendicular to the layers, it shows the existence of skyrmions at the interface. Using the Green’s function method we study the spin waves (SW) excited in a monolayer and also in a bilayer sandwiched between ferroelectric films, in zero field. We show that the DM interaction strongly affects the long-wave length SW mode. We calculate also the magnetization at low temperatures. We use next Monte Carlo simulations to calculate various physical quantities at finite temperatures such as the critical temperature, the layer magnetization and the layer polarization, as functions of the magneto–electric DM coupling and the applied magnetic field. Phase transition to the disordered phase is studied. In the case of the triangular lattice, we show the formation of skyrmions even in zero field and a skyrmion crystal in an applied field when the interface coupling between the ferroelectric film and the ferromagnetic film is rather strong. The skyrmion crystal is stable in a large region of the external magnetic field. The phase transition is studied.


2021 ◽  
Author(s):  
Andrei Kosterov ◽  
Leonid Surovitskii ◽  
Valerii Maksimochkin ◽  
Svetlana Yanson ◽  
Aleksey Smirnov

<p>Ti-rich titanomagnetite is a primary magnetic mineral in submarine basalts, as well as in some terrestrial volcanic rocks. On geological timescale, it undergoes a slow oxidation forming titanomaghemites. This natural process may be modeled to some extent by a prolonged annealing at moderately elevated temperatures. We test this by treating at 355°C for 4, 40, 110, and 375 hours a sample of submarine basalt containing titanomagnetite of approximate TM46 composition with Curie temperature of 205°C. To characterize the oxidation products emerged during annealing, we have carried out magnetic measurements between at cryogenic temperatures between 1.8 K and 300 K and at high temperatures up to 700°C.</p><p>Temperature dependences of magnetic susceptibility measured in an argon atmosphere reveal that annealing for 4 hours already leads to the formation of new magnetic phases (Phases 1 and 2 thereafter) with Curie temperatures of 420°C and 590°C, respectively. At the same time, a phase close to the initial titanomagnetite still remains in a noticeable amount, although its Curie point also shifts towards higher temperatures. Upon further annealing, the initial titanomagnetite completely disappears, the Curie temperature of Phase 1 increases, reaching 500°C after 375 hours, and the Curie temperature of Phase 2 remains practically unchanged. Phase 1 appears unstable to heating to 700°C in argon atmosphere. In samples annealed for up to 110 hours, Phase 1 disappears on cooling, and a phase with the same Curie temperature as the initial titanomagnetite reemerges. In the sample annealed for 375 hours, traces of Phase 1 are still visible in the cooling branch of the susceptibility vs. temperature curve, and the Curie temperature of the reemerged initial-like phase is 250°C. The newly formed Phase 2 remains stable when heated to 700°C in argon.</p><p>Effect of prolonged annealings is clearly seen in low-temperature magnetic properties. In the fresh sample, about one quarter of magnetization acquired at 1.8 K is demagnetized by 5 K. This feature holds for the annealed samples as well. The titanomagnetite phase in the fresh sample manifests itself in a magnetic transition at 58 K. Below this temperature, the FC and ZFC curves sharply diverge, as previously observed for titanomagnetites of intermediate composition. For the annealed samples, the shape of ZFC and FC curves and the ratio between them remain generally similar to those observed for the fresh sample, but there are also several differences. The magnetic transition temperature shifts to ~45 K, while the curves’ shape above the transition changes from concave-up to concave-down. RT-SIRM cycle to 1.8 K in zero field for the fresh sample has a characteristic convex shape and is almost reversible. Magnetization at 1.8 K is about 20% higher than the initial value at 300 K, and magnetization loss after the cycle is only 2-3%. The shape of RT-SIRM cycles changes progressively with increasing annealing time, the degree of irreversibility increasing to ~30% for the sample annealed for 375 hours. </p><p>This study is supported by Russian Foundation of the Basic Research, grants 19-05-00471 and 20-05-00573.</p>


2011 ◽  
Vol 170 ◽  
pp. 109-113 ◽  
Author(s):  
Anna Bajorek ◽  
Grażyna Chełkowska ◽  
Artur Chrobak ◽  
Marzena Kwiecień-Grudziecka

The paper presents selected magnetic properties of the Gd1-xTbxNi3 intermetallic compounds. Based on the wide-ranging SQUID magnetometer (Quantum Design MPMS, temperature from 1.9K to 300K and magnetic field up to 7T) series of different magnetic measurements were carried out. In studied system the saturation magnetization and the Curie temperature strongly depends of Tb concentration. Moreover, the so-called field cooling - zero field cooling (FC-ZFC) curves reveal a dependence of M(T) on the applied magnetic field. The thermomagnetic curves indicate interesting behaviour which is typical for terbium compounds and can be ascribed to the interaction between different aligned magnetic subblattices.


1990 ◽  
Vol 04 (03) ◽  
pp. 473-478 ◽  
Author(s):  
S. K. HASANAIN ◽  
A. MUMTAZ ◽  
T. ALI ◽  
M. HUSAIN ◽  
G. S. BHATTI

Results of the magnetic relaxation in 1:2:3 superconductors initiated by a very slow field reversal, are reported. We find that the relaxation at earlier times follows a stretched exponential type function, while at longer times it has a logarithmic behaviour. The onset time of ln t behaviour depends on the applied field. The data is interpreted in terms of a two-stage relaxation process.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiao-Jiao Song ◽  
Zhao-Bo Hu ◽  
Miao-Miao Li ◽  
Xin Feng ◽  
Ming Kong ◽  
...  

Two metal-organic frameworks (MOFs), [Dy(BDC)(NO3)(DMF)2]n (1, H2BDC = terephthalic acid) and [Dy(BDC)(NO3)]n (1a), were synthesized. The structures of MOFs 1 and 1a are easy to be reversibly transformed into each other by the desorption or adsorption of coordination solvent molecules. Accordingly, their magnetic properties can also be changed reversibly, which realizes our goals of manipulating on/off single-molecule magnet behaviour. MOF 1 behaves as a single-molecule magnet either with or without DC field. Contrarily, no slow magnetic relaxation was observed in 1a both under zero field and applied field.


2007 ◽  
Vol 21 (27) ◽  
pp. 4707-4714 ◽  
Author(s):  
K. PRABAKAR

Acoustic Emission (AE) and hysteresis parameters were studied from PZT-5A (soft) and PZT-8 (hard) ceramics during the application of ac fields in the frequency range of 0.2 Hz to 5 Hz. AE was found to occur mainly due to domain switching in these ceramics during the application of ac fields. In PZT-5A, a threshold field was observed for the AE activity to begin in both the direction of the applied field and in general, it was found to decrease with increasing frequency. Apart from this, AE activity was found to decrease with increasing number of applied ac cycles, and is attributed to domain pinning. In the case of PZT-8, AE was found to occur even at zero field at higher frequencies and AE activity was found to increase with increasing number of field cycles. These are explained on the basis of the defect dipole — domain interaction in these ceramics.


Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 632
Author(s):  
Daniel D. Rodrigues ◽  
André P. Vieira ◽  
Silvio R. Salinas

We use a simple statistical model to investigate the effects of an applied magnetic field and of the dilution of site elements on the phase diagrams of biaxial nematic systems, with an emphasis on the stability of the Landau multicritical point. The statistical lattice model consists of intrinsically biaxial nematogenic units, which interact via a Maier–Saupe potential, and which are characterized by a discrete choice of orientations of the microscopic nematic directors. According to previous calculations at zero field and in the absence of dilution, we regain the well-known sequence of biaxial, uniaxial, and disordered structures as the temperature is increased, and locate the Landau point. We then focus on the topological changes induced in the phase diagram by the application of an external magnetic field, and show that the Landau point is destabilized by the presence of an applied field. On the other hand, in the absence of a field, we show that only a quite strong dilution of nematic sites is capable of destabilizing the Landau point.


1999 ◽  
Vol 196-197 ◽  
pp. 64-66 ◽  
Author(s):  
L. Spinu ◽  
J.L. Dormann ◽  
M. Noguès ◽  
E. Tronc ◽  
J.P. Jolivet

Sign in / Sign up

Export Citation Format

Share Document