Magnetic Properties of the Gd1-xTbxNi3 Intermetallic Compounds

2011 ◽  
Vol 170 ◽  
pp. 109-113 ◽  
Author(s):  
Anna Bajorek ◽  
Grażyna Chełkowska ◽  
Artur Chrobak ◽  
Marzena Kwiecień-Grudziecka

The paper presents selected magnetic properties of the Gd1-xTbxNi3 intermetallic compounds. Based on the wide-ranging SQUID magnetometer (Quantum Design MPMS, temperature from 1.9K to 300K and magnetic field up to 7T) series of different magnetic measurements were carried out. In studied system the saturation magnetization and the Curie temperature strongly depends of Tb concentration. Moreover, the so-called field cooling - zero field cooling (FC-ZFC) curves reveal a dependence of M(T) on the applied magnetic field. The thermomagnetic curves indicate interesting behaviour which is typical for terbium compounds and can be ascribed to the interaction between different aligned magnetic subblattices.

2007 ◽  
Vol 22 (8) ◽  
pp. 2081-2086 ◽  
Author(s):  
H-Y. Guo ◽  
J.I.L. Chen ◽  
Z-G. Ye ◽  
A.S. Arrott

The ferroelectric and magnetic properties of the perovskite solid solution, (1 − x)LaCrO3–xBiCrO3, have been investigated. While pure LaCrO3 does not show ferroelectric hysteresis even at 77 K, the solid solution of La1−xBixCrO3 with x = 0.1, 0.2, 0.3, and 0.35 displays ferroelectric hysteresis, with the remanent polarization increasing with the increase of the Bi3+ content. Using a superconducting quantum interference device, the magnetization was measured versus temperature under field cooling (FC) and zero field cooling (ZFC) conditions. Magnetic hysteresis has been found in La1−xBixCrO3 (0.1 ⩽ x ⩽ 0.3) below the Néel temperature, TN. With the increase of Bi3+ content, TN decreases, while the magnetization below TN is enhanced. While the ferroelectric and magnetic properties could be due to different origins, the Bi substitution results in both ferroelectric and magnetic enhancements in the (1 − x)LaCrO3–xBiCrO3 solid solutions.


1999 ◽  
Vol 581 ◽  
Author(s):  
Xiangcheng Suns ◽  
M. Jose Yacamana ◽  
F. Morales

ABSTRACTTwo kinds of different nickel nanoparticles with distinct morphological properties, Ni(C) and Ni(O), are studied. Magnetization measurements for the assembly of two kinds of Ni nanoparticles show, a larger coercivity and remanence as well as the deviation between the zero field cooling (ZFC) and the field cooling (FC) magnetization have been observed in the Ni(O) particles. This deviation may be explained as a typical cluster glass-like behavior due to ferromagnetic interaction among the assembly of Ni(O) particles. However, Ni(C) particles exhibit superparamagnetism at room temperature. The average blocking temperature (TB) is determined to around 115K. We also observe gradual decrease in saturation magnetization, which is attributed to the nanocrystalline nature of the encapsulated particles.


2000 ◽  
Vol 14 (29n31) ◽  
pp. 3697-3702
Author(s):  
A. TIRBIYINE ◽  
A. TAOUFIK ◽  
S. SENOUSSI

We have investigated the magnetic measurements on high quality single crystals of YBa 2 Cu 3 O 7-δ. Several magnetization hysteresis loops have been obtained for different temperature values, and as a function of the angle θ between the direction of the applied magnetic field and the c-axis of the sample. Measurements were performed at magnetic field up to 6 Tesla and various temperatures between 10 and 90 K. Magnetization hysteresis loops scale and shape are strongly dependent on the temperature values. Our results show that the magnetic properties are profoundly affected by flux lines pinning. The irreversible magnetization decreases as the applied magnetic field deviates from the c-axis (θ increases).


2012 ◽  
Vol 190 ◽  
pp. 721-724 ◽  
Author(s):  
N.I. Chistyakova ◽  
V.S. Rusakov ◽  
A.A. Shapkin ◽  
P.A. Pigalev ◽  
A.P. Kazakov ◽  
...  

Mössbauer investigations of solid phases that were formed during the reduction of amorphous synthesized ferrihydrite (SF) by thermophilic anaerobic iron-reducing bacterium Thermincola ferriacetica (strain Z-0001) and alkaliphilic anaerobic iron-reducing bacterium Geoalkalibacter ferrihydriticus (strain Z-0531) were carried out at room, liquid nitrogen and helium temperatures in the presence or the absence of an external magnetic field (6 T). The magnetization M (T, H) was measured in the temperature interval 80-300 K and magnetic field up to 10 kOe. It was performed zero field cooling (ZFC) and field cooling (FC) measurements of M (T).


2006 ◽  
Vol 326-328 ◽  
pp. 381-384 ◽  
Author(s):  
Marita Yusrini ◽  
Idris Yaacob Iskandar

Nickel-Iron nanocrystalline alloys with different grain sizes were fabricated by electrodeposition technique. In this study, influence of the grain size nanocrystalline NiFe deposits on saturation magnetization Ms and coercivity Hc was investigated. Alternating gradient magnetometer (AGM) with up to 10 kOe applied magnetic field was used to study the magnetic properties of NiFe film. The results showed that saturation magnetization Ms and coercivity Hc were affected by grain size variation. Increase in grain size increased the saturation magnetization. The largest grain size of 18.6 nm showed the highest Ms of 138 emu/g, while the smallest grain size of 7.2 nm showed Ms of 94 emu/g. Minimum coercivity of 3.847 Oe was observed for sample with 7.2 nm grain sizes. The coercivities decreased for smaller grain sizes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Matúš Orendáč ◽  
Slavomír Gabáni ◽  
Pavol Farkašovský ◽  
Emil Gažo ◽  
Jozef Kačmarčík ◽  
...  

AbstractWe present a study of the ground state and stability of the fractional plateau phase (FPP) with M/Msat = 1/8 in the metallic Shastry–Sutherland system TmB4. Magnetization (M) measurements show that the FPP states are thermodynamically stable when the sample is cooled in constant magnetic field from the paramagnetic phase to the ordered one at 2 K. On the other hand, after zero-field cooling and subsequent magnetization these states appear to be of dynamic origin. In this case the FPP states are closely associated with the half plateau phase (HPP, M/Msat = ½), mediate the HPP to the low-field antiferromagnetic (AF) phase and depend on the thermodynamic history. Thus, in the same place of the phase diagram both, the stable and the metastable (dynamic) fractional plateau (FP) states, can be observed, depending on the way they are reached. In case of metastable FP states thermodynamic paths are identified that lead to very flat fractional plateaus in the FPP. Moreover, with a further decrease of magnetic field also the low-field AF phase becomes influenced and exhibits a plateau of the order of 1/1000 Msat.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 490
Author(s):  
Mohsen Aghadavoudi Jolfaei ◽  
Lei Zhou ◽  
Claire Davis

The magnetic properties of commercial dual-phase (DP) steels (DP600, DP800 and DP1000 grades) were evaluated using initial permeability, incremental permeability and coercivity and correlated with the key microstructural differences between the grades. The ferrite grain sizes and ferrite fractions have been compared with the magnetic parameters obtained from minor and major magnetisation loops within each DP grade. It has been revealed that the incremental permeability increases with the applied magnetic field amplitude to reach a peak and then drops at a higher magnetic field, with the values being different for the three DP grades at a lower field and converging to a similar permeability value at the high field. The effects of ferrite grain size and phase fraction on the incremental permeability are considered, and it has been shown that the influence of ferrite grain boundaries on magnetic permeability is more dominant than the effect of ferrite fraction in commercial DP steel samples. An analysis of the correlation between coercivity and initial permeability with tensile strength shows that the initial permeability provides a slightly better prediction of strength for the steels examined, which is believed to be due to the fact that a combination of reversible and irreversible domain components affect the coercivity value, while the initial permeability is predominantly affected by reversible domain movements. Based on the trend between incremental permeability and applied magnetic field and the commercial EM sensor (EMspec) operating parameters, the effect of lift-off and hence magnetic field strength on the sensitivity to DP steel properties can be assessed.


2011 ◽  
Vol 687 ◽  
pp. 500-504
Author(s):  
S. X. Xue ◽  
S.S. Feng ◽  
P. Y. Cai ◽  
Q T Li ◽  
H. B. Wang

Ni54Mn21-xFexGa25(x=0,1,3,5,7,9)polycrystalline alloys were prepared by the technique of directional solidification and the effect of substituting Fe for Mn on the martensitic transformation and mechanical properties of the alloys was analyzed. It was found that the Curie temperature increased with increasing substitution while the martensitic transformation temperature decreased. The Fe-doped Ni54Mn21Ga25 alloys exhibit excellent magnetic properties at room temperature; the typical Ni54Mn20Fe1Ga25 alloy shows a large magnetic-induced-strain of -1040 ppm at a magnetic field of 4000 Oe.


Sign in / Sign up

Export Citation Format

Share Document