Establishment, characteristics, and utilization of a new in vivo-in vitro system

1989 ◽  
Vol 16 (2) ◽  
pp. 353-356 ◽  
Author(s):  
Sun Ji-Rong ◽  
Shen Yu ◽  
Luo Shen-Ru ◽  
Li Zheng ◽  
Gu Xian-Zhi
2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Nahed El-Najjar ◽  
Rashmi P. Kulkarni ◽  
Nancy Nader ◽  
Rawad Hodeify ◽  
Khaled Machaca

Diabetes is a complex disease that is characterized with hyperglycemia, dyslipidemia, and insulin resistance. These pathologies are associated with significant cardiovascular implications that affect both the macro- and microvasculature. It is therefore important to understand the effects of various pathologies associated with diabetes on the vasculature. Here we directly test the effects of hyperglycemia on vascular smooth muscle (VSM) Ca2+signaling in an isolated in vitro system using the A7r5 rat aortic cell line as a model. We find that prolonged exposure of A7r5 cells to hyperglycemia (weeks) is associated with changes to Ca2+signaling, including most prominently an inhibition of the passive ER Ca2+leak and the sarcoplasmic reticulum Ca2+-ATPase (SERCA). To translate these findings to the in vivo condition, we used primary VSM cells from normal and diabetic subjects and find that only the inhibition of the ER Ca2+leaks replicates in cells from diabetic donors. These results show that prolonged hyperglycemia in isolation alters the Ca2+signaling machinery in VSM cells. However, these alterations are not readily translatable to the whole organism situation where alterations to the Ca2+signaling machinery are different.


2007 ◽  
Vol 6 (12) ◽  
pp. 2214-2221 ◽  
Author(s):  
Lois M. Douglas ◽  
Li Li ◽  
Yang Yang ◽  
A. M. Dranginis

ABSTRACT The Flo11/Muc1 flocculin has diverse phenotypic effects. Saccharomyces cerevisiae cells of strain background Σ1278b require Flo11p to form pseudohyphae, invade agar, adhere to plastic, and develop biofilms, but they do not flocculate. We show that S. cerevisiae var. diastaticus strains, on the other hand, exhibit Flo11-dependent flocculation and biofilm formation but do not invade agar or form pseudohyphae. In order to study the nature of the Flo11p proteins produced by these two types of strains, we examined secreted Flo11p, encoded by a plasmid-borne gene, in which the glycosylphosphatidylinositol anchor sequences had been replaced by a histidine tag. A protein of approximately 196 kDa was secreted from both strains, which upon purification and concentration, aggregated into a form with a very high molecular mass. When secreted Flo11p was covalently attached to microscopic beads, it conferred the ability to specifically bind to S. cerevisiae var. diastaticus cells, which flocculate, but not to Σ1278b cells, which do not flocculate. This was true for the 196-kDa form as well as the high-molecular-weight form of Flo11p, regardless of the strain source. The coated beads bound to S. cerevisiae var. diastaticus cells expressing FLO11 and failed to bind to cells with a deletion of FLO11, demonstrating a homotypic adhesive mechanism. Flo11p was shown to be a mannoprotein. Bead-to-cell adhesion was inhibited by mannose, which also inhibits Flo11-dependent flocculation in vivo, further suggesting that this in vitro system is a useful model for the study of fungal adhesion.


1989 ◽  
Vol 9 (11) ◽  
pp. 4746-4749 ◽  
Author(s):  
D I Chasman ◽  
J Leatherwood ◽  
M Carey ◽  
M Ptashne ◽  
R D Kornberg

Fusion proteins known to activate transcription in vivo were tested for the ability to stimulate transcription in vitro in a recently developed Saccharomyces cerevisiae RNA polymerase II transcription system. One fusion protein, whose activation domain was derived from the herpesvirus transcriptional activator VP16, gave more than 100-fold stimulation in the in vitro system. The order of effects of the various proteins was the same for transcription in vitro and in vivo, suggesting that the natural mechanism of activation is preserved in vitro.


1991 ◽  
Vol 11 (4) ◽  
pp. 2035-2039
Author(s):  
P J Hanic-Joyce ◽  
M W Gray

To investigate transcriptional mechanisms in plant mitochondria, we have developed an accurate and efficient in vitro transcription system consisting of a partially purified wheat mitochondrial extract programmed with cloned DNA templates containing the promoter for the wheat mitochondrial cytochrome oxidase subunit II gene (coxII). Using this system, we localize the coxII promoter to a 372-bp region spanning positions -56 to -427 relative to the coxII translation initiation codon. We show that in vitro transcription of coxII is initiated at position -170, precisely the same site at which transcription is initiated in vivo. Transcription begins within the sequence GTATAGTAAGTA (the initiating nucleotide is underlined), which is similar to the consensus yeast mitochondrial promoter motif, (A/T)TATAAGTA. This is the first in vitro system that faithfully reproduces in vivo transcription of a plant mitochondrial gene.


Weed Science ◽  
1980 ◽  
Vol 28 (3) ◽  
pp. 334-340 ◽  
Author(s):  
Luanne M. Deal ◽  
J. T. Reeves ◽  
B. A. Larkins ◽  
F. D. Hess

The effects of chloracetamides on protein synthesis were studied both in vivo and in vitro. Four chloracetamide herbicides, alachlor [2-chloro-2′,6′-diethyl-N-(methoxymethyl)acetanilide], metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide], CDAA (N–N-diallyl-2-chloroacetamide), and propachlor (2-chloro-N-isopropylacetanilide) were tested for inhibition of [3H]-leucine incorporation into protein. Incorporation of3H-leucine into trichloroacetic acid (TCA)-insoluble protein was inhibited in oat (Avena sativaL. ‘Victory’) seedlings grown in sand culture and treated 12 h at 1 × 10−4M with these chloracetamides. The herbicides were also tested in a cell-free protein synthesizing system containing polyribosomes purified from oat root cytoplasm. These herbicides had no effect on the rates of polypeptide elongation nor on the synthesis of specific polypeptides when herbicides (1 × 10−4M) were added directly to the system. Polypeptide formation was inhibited 89% when 1 × 10−4M cycloheximide was added during translation. Cytoplasmic polyribosomes were isolated from oat roots treated 12 h with 1 × 10−4M herbicide. Translation rates and products were not altered when these polyribosomes were added to the in vitro system. Protein synthesis is inhibited when tested in an in vivo system; however, the inhibition does not occur during the translation of mRNA into protein.


2017 ◽  
Vol 100 (11) ◽  
pp. 8881-8894 ◽  
Author(s):  
Rebecca Danielsson ◽  
Mohammad Ramin ◽  
Jan Bertilsson ◽  
Peter Lund ◽  
Pekka Huhtanen

2002 ◽  
Vol 22 (19) ◽  
pp. 6726-6734 ◽  
Author(s):  
Tetsuya Miyamoto ◽  
Junichi Obokata ◽  
Masahiro Sugiura

ABSTRACT RNA editing in higher-plant chloroplasts involves C-to-U conversions at specific sites. Although in vivo analyses have been performed, little is known about the biochemical aspects of chloroplast editing reactions. Here we improved our original in vitro system and devised a procedure for preparing active chloroplast extracts not only from tobacco plants but also from pea plants. Using our tobacco in vitro system, cis-acting elements were defined for psbE and petB mRNAs. Distinct proteins were found to bind specifically to each cis-element, a 56-kDa protein to the psbE site and a 70-kDa species to the petB site. Pea chloroplasts lack the corresponding editing site in psbE since T is already present in the DNA. Parallel in vitro analyses with tobacco and pea extracts revealed that the pea plant has no editing activity for psbE mRNAs and lacks the 56-kDa protein, whereas petB mRNAs are edited and the 70-kDa protein is also present. Therefore, coevolution of an editing site and its cognate trans-factor was demonstrated biochemically in psbE mRNA editing between tobacco and pea plants.


Development ◽  
1975 ◽  
Vol 34 (2) ◽  
pp. 485-495
Author(s):  
L. Brinkley ◽  
G. Basehoar ◽  
A. Branch ◽  
J. Avery

An in vitro system was devised which supports palate development in partially dissected embryonic mouse heads. The heads were suspended in the culture chamber so that they were not held in a fixed orientation and were constantly surrounded with a fluid medium. Under these circumstances the developing palate must effect closure without the aid of gravitational forces. The culture medium was constantly circulated, gassed with 95% O2, 5% CO2 using hollow fiber gas permeation devices, and kept at 34°C. Swiss-Webster mouse embryos of 12 days 12–18 h (ca. 48 h prior to expected in vivo closure) or 13 days 8–14 h (ca. 24 h prior to closure) were used to test the ability of the system to support palatal development. Embryonic heads were dissected in one of two ways before culture: brain and tongue removed, or brain, tongue and mandible removed. After 24 h in culture, preparations of either age with only the brain and tongue removed had made substantially greater progress than their counterparts with the brain, tongue and mandible removed. With only the brain and tongue removed, the palatal shelves were contacting, adhered or fused in 67 % of the older embryos, whereas most of the embryos of the same age cultured with the brain, tongue and mandible removed had shelves that were not fully elevated and still separated by a moderate gap. Thus for maximal progress in the present system, the oral cavity must be intact except for the tongue.


1997 ◽  
Vol 328 (2) ◽  
pp. 669-675 ◽  
Author(s):  
L. Tamara DOERING ◽  
Randy SCHEKMAN

The yeast mating pheromone precursor prepro-alpha factor was fused to C-terminal signals for glycosyl-phosphatidylinositol (GPI) anchor attachment, based on the sequence of the Saccharomyces cerevisiae protein Gas1p. Maturation of fusion proteins expressed in vivo required the presence of both a functional GPI attachment site and the synthesis of GPI precursors. Constructs were translated in vitro for use in cell-free studies of glycolipid attachment. The radiolabelled polypeptides were post-translationally translocated into yeast microsomes, where at least one third of the molecules received a GPI anchor. This approach offers distinct advantages over anchor attachment reactions that require co-translational translocation of secretory peptide substrates.


Sign in / Sign up

Export Citation Format

Share Document