Energy content of hydrocarbon gas mixtures typical of natural gas

Energy ◽  
1989 ◽  
Vol 14 (10) ◽  
pp. 629-633
Author(s):  
Shawn P. Heneghan
1980 ◽  
Vol 34 (4) ◽  
pp. 411-414 ◽  
Author(s):  
Dwain E. Diller ◽  
Ren Fang Chang

The feasibility of using Raman spectrometry for determining the composition of mixtures of natural gas components was examined. Raman intensity measurements were carried out on eight, gravimetrically prepared, binary gas mixtures containing methane, nitrogen, and isobutane at ambient temperature and at pressures to 0.8 MPa. The repeatability of the molar intensity ratio, ( I2/ y2)/( I1/ y1), where y1 is the concentration of component 1 in the mixture, and I1 is the intensity of the related line in the mixture spectrum, was examined. The compositions of two gravimetrically prepared methane-nitrogen-isobutane gas mixtures were determined spectrometrically with an estimated precision of about 0.001 in the mole fraction. Typical differences from the gravimetric concentrations were less than 0.002 in the mole fraction. The Raman spectrum of a gravimetrically prepared, eight component, hydrocarbon gas mixture was obtained to show that the Raman spectrometric method has potential for being applicable to natural gas type mixtures.


1990 ◽  
Vol 45 (5) ◽  
pp. 633-643 ◽  
Author(s):  
J. M. Prausnitz ◽  
R. L. Cotterman
Keyword(s):  

2011 ◽  
Vol 66 (2) ◽  
pp. 76-81 ◽  
Author(s):  
H. Pedersen ◽  
T. L. Christiansen ◽  
M. A. J. Somers
Keyword(s):  

2021 ◽  
Author(s):  
Ramees K Rahman ◽  
K R v (Raghu) Manikantachari ◽  
Samuel Barak ◽  
Erik Ninnemann ◽  
Ashvin Hosangadi ◽  
...  

2020 ◽  
Vol 56 ◽  
pp. 207-229
Author(s):  
Diana B. Loomer ◽  
Kerry T.B. MacQuarrie ◽  
Tom A. Al

Isotopic analyses of natural gas from the Stoney Creek oil field in New Brunswick indicate carbon (δ13C) and hydrogen (δ2H) values in methane (C1) of -42.4 ± 0.7‰ VPDB and -220.9 ± 3.2‰ VSMOW, respectively. Isotopic data and a gas molecular ratio of 12 ± 1 indicate a wet thermogenic gas formed with oil near the onset of the oil-gas transition zone. The isotopic profiles of the C1–C5 hydrocarbon gases are consistent with kinetic isotope effect models. The Albert Formation of the Horton Group hosts the Stoney Creek oil field (SCOF) and the McCully gas field (MCGF) the only other gas-producing field in the province. Both are thermogenic in origin; however, the SCOF gas has a lower thermal maturity than the MCGS. Hydrocarbon gas composition in shallow aquifers across southeastern New Brunswick was also evaluated. Gas source interpretations based on δ13C and δ2H values are uncertain; oxidation and biogenic overprinting are common and complicate interpretation. The effect of oxidation on δ13C and δ2H values was apparent when C1 concentrations were ≤1 mg/L. In some samples with C1 concentrations >5 mg/L, isotopic discrimination methods point to a biogenic origin. However, the molecular ratios <75 and the presence of >C3 fractions, indicate a thermogenic origin. This suggests a thermogenic isotopic signature has been overprinted by biological activity.


Author(s):  
Amrit Sahu ◽  
A.A.E.S Mohamed ◽  
Snehashish Panigrahy ◽  
Gilles Bourque ◽  
Henry Curran

Abstract New ignition delay time measurements (IDT) of natural gas mixtures enriched with small amounts of n-hexane and n-heptane were performed in a rapid compression machine to interpret the sensitization effect of heavier hydrocarbons on auto-ignition at gas-turbine relevant conditions. The experimental data of natural gas mixtures containing alkanes from methane to n-heptane were carried out over a wide range of temperatures (840-1050 K), pressures (20-30 bar), and equivalence ratios (f = 0.5 and 1.5). The experiments were complemented with numerical simulations using a detailed kinetic model developed to investigate the effect of n-hexane and n-heptane additions. Model predictions show that the addition of even small amounts (1-2%) of n-hexane and n-heptane can lead to an increase in reactivity by ~40-60 ms at a temperature of 700 K. The IDTs of these mixtures decrease rapidly with an increase in the concentration of up to 7.5% but becomes almost independent of the C6/C7 concentration &gt;10%. This sensitization effect of C6 and C7 is also found to be more pronounced in the temperature range 700-900 K compared to that at higher temperatures (&gt;900 K). The reason is attributed to the dependence of IDT primarily on H2O2(+M)??H+?H (+M) at higher temperatures while the fuel-dependent reactions such as H-atom abstraction, RO2 dissociation, or Q OOH+O2 reactions are less important compared to the temperature range 700-900 K, where they are very important.


Sign in / Sign up

Export Citation Format

Share Document