Identification of Paramecium mitochondrial proteins using antibodies raised against fused mitochondrial gene products

Gene ◽  
1986 ◽  
Vol 49 (1) ◽  
pp. 129-138 ◽  
Author(s):  
Ravi Mahalingam ◽  
Jeffrey J. Seilhamer ◽  
Arthur E. Pritchard ◽  
Donald J. Cummings
2021 ◽  
Author(s):  
Barbara Uszczynska-Ratajczak ◽  
Sreedevi Sugunan ◽  
Monika Kwiatkowska ◽  
Maciej Migdal ◽  
Silvia Carbonell-Sala ◽  
...  

Most mitochondrial proteins are encoded by nuclear genes, synthetized in the cytosol and targeted into the organelle. The import of some, but not all, nuclear-encoded mitochondrial proteins begins with translation of messenger RNAs (mRNAs) on the surface of mitochondria. To characterize the spatial organization of mitochondrial gene products in zebrafish (Danio rerio), we sequenced RNA from different cellular fractions. Our results confirmed the presence of nuclear-encoded mRNAs in the mitochondrial fraction, which in unperturbed conditions, are mainly transcripts encoding large proteins with specific properties, like transmembrane domains. To further explore the principles of mitochondrial protein compartmentalization in zebrafish, we quantified the transcriptomic changes for each subcellular fraction triggered by the chchd4a-/- mutation, causing the disorders in the mitochondrial protein import. Our results indicate that the proteostatic stress further restricts the population of transcripts on the mitochondrial surface, allowing only the largest and the most evolutionary conserved proteins to be synthetized there. We also show that many nuclear-encoded mitochondrial transcripts translated by the cytosolic ribosomes stay resistant to the global translation shutdown. Thus, vertebrates, in contrast to yeast, are not likely to employ localized translation to facilitate synthesis of mitochondrial proteins under proteostatic stress conditions.


2017 ◽  
Vol 41 (S1) ◽  
pp. S464-S464
Author(s):  
S. Hina

Neuroblastoma is a solid neuroendocrine tumour and most common type of cancer of infancy. It is a complex heterogeneous disease and many factors such as molecular, cellular and genetic features are involved in its development. Mitochondria play a pivotal role in neuronal cell survival or death. Neurons are highly reliant on aerobic oxidative phosphorylation (OXPHOS) for their energy needs. Defective activities of mitochondrial complexes I, II, III and IV have been identified in many neurological and neurodegenerative diseases. Human mitochondria with its own genetic material meet the needs required for the assembly of subunits of the oxidative phosphorylation (OXPHOS) complexes. A number of translational inhibitors are known that could potentially effect translation of mitochondrial protein synthesis. Among these puromycin, homoharringtonine and cyclohexamide were selected for the present study. The effect of these translational inhibitors on mitochondrial gene expression for the treatment of neuroblastoma are not well established. Therefore, in this study, we have investigated the effects of these translational inhibitors on the expression of human mitochondrial gene expression in SH-SY5Y neuroblastoma cells.We observed a significant effect on the level of mitochondrial transcripts upon exposure to these translation inhibitors in SH-SY5Y cells, however, the effects on expression of mitochondrial proteins were minimal. This suggests that translational inhibitors might not directly affect the abundance of mitochondrial proteins. Translational inhibitors induce significant effect on mitochondrial gene expression that can be lead to the new-targeted therapy for treating neuroblastoma.


1990 ◽  
Vol 265 (3) ◽  
pp. 903-906 ◽  
Author(s):  
G M Gibb ◽  
C I Ragan

Products of the mitochondrial genome were identified in the bovine kidney cell line NBL-1 by labelling with [35S]methionine in the presence of cycloheximide. Seven proteins were precipitated by an antiserum to bovine heart NADH dehydrogenase, corresponding to the seven mitochondrial gene products identified in the human HeLa cell line. Comparison of these mitochondrial gene products with purified bovine NADH dehydrogenase by SDS/gel electrophoresis revealed that the ND-5 product is probably a previously unidentified protein of apparent Mr 51,000, and the ND-4 product is the protein of apparent Mr 39,000.


2020 ◽  
Author(s):  
Gautam Pareek ◽  
Leo J. Pallanck

AbstractThe m-AAA proteases plays a critical role in the proteostasis of the inner mitochondrial membrane proteins, and mutations in the genes encoding these proteases cause severe incurable neurological diseases. To further explore the biological role of the m-AAA proteases and the pathological consequences of their deficiency, we used a genetic approach in the fruit fly Drosophila melanogaster to inactivate the ATPase family gene 3-like 2 (AFG3L2) gene, which encodes a component of the m-AAA proteases. We found that null alleles of Drosophila AFG3L2 die early in development, but partial inactivation of AFG3L2 using RNAi extended viability to the late pupal and adult stages of development. Flies with partial inactivation of Afg3l2 exhibited marked behavioral defects, neurodegeneration, mitochondrial morphological alterations, and diminished respiratory chain (RC) activity. Further work revealed that reduced RC activity was a consequence of widespread defects in mitochondrial gene expression, including diminished mitochondrial transcription, translation and impaired mitochondrial ribosome biogenesis. These defects were accompanied by the compensatory activation of the mitochondrial unfolded protein response (mito-UPR) and accumulation of unfolded mitochondrial proteins, including proteins involved in transcription. Overexpression of the mito-UPR components partially rescued the Afg3l2-deficient phenotypes, indicating that sequestration of essential components of the mitochondrial gene expression into aggregates partly accounts for these defects. However, Afg3l2 also co-sediments with the mitochondrial ribosome biogenesis machinery, suggesting an additional novel role for Afg3l2 in ribosome biogenesis. Our work suggests that strategies designed to modify mitochondrial stress pathways and mitochondrial gene expression could be therapeutic in the diseases caused by mutations in AFG3L2.Author SummaryMitochondria produce virtually all of the cellular energy through the actions of the respiratory chain (RC) complexes. However, both the assembly of the RC complexes, and their biological functions come at a cost. Biogenesis of the RC complexes depends on the coordinated expression of nuclear and mitochondrially encoded subunits and an imbalance in this process can cause protein aggregation. Moreover, the RC complexes produce highly damaging reactive oxygen species as a side product of their activity. The Mitochondrial AAA+ family of proteases are believed to provide the first line of defense against these insults. The importance of this protease family is best exemplified by the severe neurodegenerative diseases that are caused by mutations in their respective genes. To better understand the biological roles of the AAA+ proteases, and the physiological consequences of their inactivation we used a genetic approach in Drosophila to study the Afg3l2 AAA+ protease. Unexpectedly, we found that Afg3l2 deficiency profoundly impaired mitochondrial gene expression, including transcription, translation and ribosome biogenesis. These phenotypes were accompanied by accumulation of insoluble mitochondrial proteins, and compensatory activation of mito-UPR and autophagy. Our work indicates Afg3l2 plays critical roles in degrading unfolded mitochondrial proteins and regulating mitochondrial gene expression.


1977 ◽  
pp. 345-370 ◽  
Author(s):  
H. R. Mahler ◽  
D. Hanson ◽  
D. Miller ◽  
T. Bilinski ◽  
D. M. Ellis ◽  
...  

2013 ◽  
Vol 24 (4) ◽  
pp. 440-452 ◽  
Author(s):  
Gavin P. McStay ◽  
Chen Hsien Su ◽  
Alexander Tzagoloff

Previous studies of yeast cytochrome oxidase (COX) biogenesis identified Cox1p, one of the three mitochondrially encoded core subunits, in two high–molecular weight complexes combined with regulatory/assembly factors essential for expression of this subunit. In the present study we use pulse-chase labeling experiments in conjunction with isolated mitochondria to identify new Cox1p intermediates and place them in an ordered pathway. Our results indicate that before its assimilation into COX, Cox1p transitions through five intermediates that are differentiated by their compositions of accessory factors and of two of the eight imported subunits. We propose a model of COX biogenesis in which Cox1p and the two other mitochondrial gene products, Cox2p and Cox3p, constitute independent assembly modules, each with its own complement of subunits. Unlike their bacterial counterparts, which are composed only of the individual core subunits, the final sequence in which the mitochondrial modules associate to form the holoenzyme may have been conserved during evolution.


Genetics ◽  
2001 ◽  
Vol 158 (3) ◽  
pp. 1289-1300
Author(s):  
Keith L Adams ◽  
Monica Rosenblueth ◽  
Yin-Long Qiu ◽  
Jeffrey D Palmer

Abstract Unlike in animals, the functional transfer of mitochondrial genes to the nucleus is an ongoing process in plants. All but one of the previously reported transfers in angiosperms involve ribosomal protein genes. Here we report frequent transfer of two respiratory genes, sdh3 and sdh4 (encoding subunits 3 and 4 of succinate dehydrogenase), and we also show that these genes are present and expressed in the mitochondria of diverse angiosperms. Southern hybridization surveys reveal that sdh3 and sdh4 have been lost from the mitochondrion about 40 and 19 times, respectively, among the 280 angiosperm genera examined. Transferred, functional copies of sdh3 and sdh4 were characterized from the nucleus in four and three angiosperm families, respectively. The mitochondrial targeting presequences of two sdh3 genes are derived from preexisting genes for anciently transferred mitochondrial proteins. On the basis of the unique presequences of the nuclear genes and the recent mitochondrial gene losses, we infer that each of the seven nuclear sdh3 and sdh4 genes was derived from a separate transfer to the nucleus. These results strengthen the hypothesis that angiosperms are experiencing a recent evolutionary surge of mitochondrial gene transfer to the nucleus and reveal that this surge includes certain respiratory genes in addition to ribosomal protein genes.


1990 ◽  
Vol 10 (3) ◽  
pp. 1297-1300 ◽  
Author(s):  
R M Wright ◽  
R O Poyton

We show here that SNF1 and SSN6 are required for derepression of the glucose-repressible yeast genes COX6 and CYC1, which encode the mitochondrial proteins cytochrome c oxidase subunit VI and iso-1-cytochrome c, respectively. In an snf1 mutant genetic background, the transcription of both COX6 and CYC1 continued to be repressed after cells were shifted into derepressing media. In an ssn6 mutant genetic background, both COX6 and CYC1 were expressed constitutively at high levels in repressing media. SSN6 acted epistatically to SNF1 in the regulation of both cytochrome genes. These findings are similar to previous findings on the effects of SNF1 and SSN6 on SUC2 expression in Saccharomyces cerevisiae and are consistent with a model proposing that SNF1 exerts its effect through SSN6 on COX6 and CYC1.


2020 ◽  
Vol 117 (47) ◽  
pp. 29602-29608
Author(s):  
Jiuya He ◽  
Joe Carroll ◽  
Shujing Ding ◽  
Ian M. Fearnley ◽  
Martin G. Montgomery ◽  
...  

The adenosine triphosphate (ATP) synthase in human mitochondria is a membrane bound assembly of 29 proteins of 18 kinds organized into F1-catalytic, peripheral stalk (PS), and c8-rotor ring modules. All but two membrane components are encoded in nuclear genes, synthesized on cytoplasmic ribosomes, imported into the mitochondrial matrix, and assembled into the complex with the mitochondrial gene products ATP6 and ATP8. Intermediate vestigial ATPase complexes formed by disruption of nuclear genes for individual subunits provide a description of how the various domains are introduced into the enzyme. From this approach, it is evident that three alternative pathways operate to introduce the PS module (including associated membrane subunits e, f, and g). In one pathway, the PS is built up by addition to the core subunit b of membrane subunits e and g together, followed by membrane subunit f. Then this b-e-g-f complex is bound to the preformed F1-c8module by subunits OSCP and F6. The final component of the PS, subunit d, is added subsequently to form a key intermediate that accepts the two mitochondrially encoded subunits. In another route to this key intermediate, first e and g together and then f are added to a preformed F1-c8-OSCP-F6-b-d complex. A third route involves the addition of the c8-ring module to the complete F1-PS complex. The key intermediate then accepts the two mitochondrially encoded subunits, stabilized by the addition of subunit j, leading to an ATP synthase complex that is coupled to the proton motive force and capable of making ATP.


Sign in / Sign up

Export Citation Format

Share Document