Relationship between crop water stress index and other physiological plant water status indicators in guayule

1988 ◽  
Vol 18 (4) ◽  
pp. 287-296 ◽  
Author(s):  
Stephen G. Allen ◽  
Francis S. Nakayama
Horticulturae ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 86
Author(s):  
Chen Ru ◽  
Xiaotao Hu ◽  
Wene Wang ◽  
Hui Ran ◽  
Tianyuan Song ◽  
...  

Precise irrigation management of grapevines in greenhouses requires a reliable method to easily quantify and monitor the grapevine water status to enable effective manipulation of the water stress of the plants. This study evaluated the applicability of crop water stress index (CWSI) based on the leaf temperature for diagnosing the grapevine water status. The experiment was conducted at Yuhe Farm (northwest China), with drip-irrigated grapevines under three irrigation treatments. Meteorological factors, soil moisture contents, leaf temperature, growth indicators including canopy coverage and fruit diameter, and physiological indicators including SPAD (relative chlorophyll content), stem water potential (φs), stomatal conductance (gs), and transpiration rate (E) were studied during the growing season. The results show that the relationship between the leaf-air temperature difference (Tc-Ta) and the plant water status indicators (φs, gs, E) were significant (P < 0.05), and the relationship between gs, E and Tc-Ta was the closest, with R2 values ranging from 0.530–0.604 and from 0.545–0.623, respectively. CWSI values are more easily observed on sunny days, and it was determined that 14:00 BJS is the best observation time for the CWSI value under different non-water-stressed baselines. There is a reliable linear correlation between the CWSI value and the soil moisture at 0–40 cm (P < 0.05), which could provide a reference when using the CWSI to diagnose the water status of plants. Compared with the Tc-Ta value, the CWSI could more accurately monitor the plant water status, and above the considered indictors, gs has the greatest correlation with the CWSI.


2014 ◽  
Vol 15 (3) ◽  
pp. 273-289 ◽  
Author(s):  
Ronit Rud ◽  
Y. Cohen ◽  
V. Alchanatis ◽  
A. Levi ◽  
R. Brikman ◽  
...  

2019 ◽  
Vol 11 (7) ◽  
pp. 757 ◽  
Author(s):  
Cristina Romero-Trigueros ◽  
José María Bayona Gambín ◽  
Pedro Antonio Nortes Tortosa ◽  
Juan José Alarcón Cabañero ◽  
Emilio Nicolás Nicolás

Water is not always accessible for agriculture due to its scarcity. In order to successfully develop irrigation strategies that optimize water productivity characterization of the plant, the water status is necessary. We assessed the suitability of thermal indicators by infrared thermometry (IRT) to determine the water status of grapefruit in a commercial orchard with long term irrigation using saline reclaimed water (RW) and regulated deficit irrigation (RDI) in Southeastern Spain. The results showed that Tc-Ta differences were positive in a wide range of vapor pressure deficits (VPD), and the major Tc-Ta were found at 10.00 GMT, before and after the highest daily values of VPD and solar radiation, respectively, were reached. In addition, we evaluated the relationships between Tc-Ta and VPD to establish the Non-Water Stressed Baselines (NWSBs), which are necessary to accurately calculate the crop water stress index (CWSI). Two important findings were found, which include i) the best significant correlations (p < 0.005) found at 10.00 GMT and their slopes were positive, and ii) NWSBs showed a marked hourly and seasonal variation. The hourly shift was mainly explained by the variation in solar radiation since both the NWSB-slope and the NWSB-intercept were significantly correlated with a zenith solar angle (θZ) (p < 0.005). The intercept was greater when θZ was close to 0 (at midday) and the slope displayed a marked hysteresis throughout the day, increasing in the morning and decreasing in the afternoon. The NWSBs determination, according to the season improved most of their correlation coefficients. In addition, the relationship significance of Tc-Ta versus VPD was higher in the period where the intercept and Tc-Ta were low. CWSI was the thermal indicator that showed the highest level of agreement with the stem water potential of the different treatments even though Tc and Tc-Ta were also significantly correlated. We highlight the suitability of thermal indicators measured by IRT to determine the water status of grapefruits under saline (RW) and water stress (RDI) conditions.


2020 ◽  
Vol 241 ◽  
pp. 106343
Author(s):  
Afonso Zucolotto Venturin ◽  
Claudinei Martins Guimarães ◽  
Elias Fernandes de Sousa ◽  
José Altino Machado Filho ◽  
Weverton Pereira Rodrigues ◽  
...  

Agriculture ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 492
Author(s):  
Krista C. Shellie ◽  
Bradley A. King

Precision irrigation of wine grape is hindered by the lack of an automated method for monitoring vine water status. The objectives of this study were to: Validate an automated model for remote calculation of a daily crop water stress index (CWSI) for the wine grape (Vitis vinifera L.) cultivar Malbec and evaluate its suitability for use in irrigation scheduling. Vines were supplied weekly with different percentages of evapotranspiration-based estimated water demand (ETc) over four growing seasons. In the fifth growing season, different daily CWSI threshold values were used to trigger an irrigation event that supplied 28 mm of water. All three indicators of vine water status (CWSI, midday leaf water potential (Ψlmd), and juice carbon isotope ratio (δ13C)) detected an increase in stress severity as the irrigation amount decreased. When the irrigation amount decreased from 100% to 50% ETc, 70% to 35% ETc, or the daily CWSI threshold value increased from 0.4 to 0.6, berry fresh weight and juice titratable acidity decreased, juice δ13C increased, the weekly CWSI increased, and Ψlmd decreased. Under the semi-arid conditions of this study, utilizing a daily CWSI threshold for irrigation scheduling reduced the irrigation amount without compromising the yield or changes in berry composition and remotely provided automated decision support for managing water stress severity in grapevine.


2019 ◽  
Author(s):  
Abdelmoneim Zakaria Mohamed ◽  
Yasin Osroosh ◽  
Troy Robert Peters ◽  
Travis Bates ◽  
Colin Sanford Campbell ◽  
...  

2014 ◽  
Vol 1 (1) ◽  
pp. 1203-1237
Author(s):  
A. Bonfante ◽  
A. Agrillo ◽  
R. Albrizio ◽  
A. Basile ◽  
R. Buonomo ◽  
...  

Abstract. This paper aims to test a new physically oriented approach to viticulture zoning at the farm scale, strongly rooted on hydropedology and aiming to achieve a better use of environmental features with respect to plant requirement and wine production. The physics of our approach is defined by the use of soil-plant-atmosphere simulation models which applies physically-based equations to describe the soil hydrological processes and solves soil-plant water status. This study (ZOVISA project) was conducted in a farm devoted to high quality wines production (Aglianico DOC), located in South Italy (Campania region, Mirabella Eclano-AV). The soil spatial distribution was obtained after standard soil survey informed by geophysical survey. Two Homogenous Zones (HZs) were identified; in each one of those a physically based model was applied to solve the soil water balance and estimate the soil functional behaviour (crop water stress index, CWSI) defining the functional Homogeneous Zones (fHzs). In these last, experimental plots were established and monitored for investigating soil-plant water status, crop development (biometric and physiological parameters) and daily climate variables (temperature, solar radiation, rainfall, wind). The effects of crop water status on crop response over must and wine quality were then evaluated in the fHZs. This was performed by comparing crop water stress with (i) crop physiological measurement (leaf gas exchange, chlorophyll a fluorescence, leaf water potential, chlorophyll content, LAI measurement), (ii) grape bunches measurements (berry weight, sugar content, titratable acidity, etc.) and (iii) wine quality (aromatic response). Eventually this experiment has proved the usefulness of the physical based approach also in the case of mapping viticulture microzoning.


2020 ◽  
Author(s):  
Abdelmoneim Z. Mohamed ◽  
Yasin Osroosh ◽  
R. Troy Peters ◽  
Travis Bates ◽  
Colin S. Campbell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document