Groundstate threshold pc in Ising frustration systems on 2D regular lattices

1994 ◽  
Vol 202 (1-2) ◽  
pp. 48-67 ◽  
Author(s):  
J. Bendisch
Keyword(s):  
2019 ◽  
Vol 383 (10) ◽  
pp. 957-966 ◽  
Author(s):  
Alexander S. Balankin ◽  
M.A. Martínez-Cruz ◽  
M.D. Álvarez-Jasso ◽  
M. Patiño-Ortiz ◽  
J. Patiño-Ortiz

2017 ◽  
Vol 28 (08) ◽  
pp. 1750099
Author(s):  
F. W. S. Lima

We investigate the critical properties of the equilibrium and nonequilibrium two-dimensional (2D) systems on Solomon networks with both nearest and random neighbors. The equilibrium and nonequilibrium 2D systems studied here by Monte Carlo simulations are the Ising and Majority-vote 2D models, respectively. We calculate the critical points as well as the critical exponent ratios [Formula: see text], [Formula: see text], and [Formula: see text]. We find that numerically both systems present the same exponents on Solomon networks (2D) and are of different universality class than the regular 2D ferromagnetic model. Our results are in agreement with the Grinstein criterion for models with up and down symmetry on regular lattices.


Author(s):  
Fenxiao Chen ◽  
Yun-Cheng Wang ◽  
Bin Wang ◽  
C.-C. Jay Kuo

Abstract Research on graph representation learning has received great attention in recent years since most data in real-world applications come in the form of graphs. High-dimensional graph data are often in irregular forms. They are more difficult to analyze than image/video/audio data defined on regular lattices. Various graph embedding techniques have been developed to convert the raw graph data into a low-dimensional vector representation while preserving the intrinsic graph properties. In this review, we first explain the graph embedding task and its challenges. Next, we review a wide range of graph embedding techniques with insights. Then, we evaluate several stat-of-the-art methods against small and large data sets and compare their performance. Finally, potential applications and future directions are presented.


2019 ◽  
Vol 100 (1) ◽  
Author(s):  
Dominik Schildknecht ◽  
Michael Schütt ◽  
Laura J. Heyderman ◽  
Peter M. Derlet

2014 ◽  
Vol 51 (A) ◽  
pp. 139-158
Author(s):  
Nicolas Lanchier

In this article we study a biased version of the naming game in which players are located on a connected graph and interact through successive conversations in order to select a common name for a given object. Initially, all the players use the same word B except for one bilingual individual who also uses word A. Both words are attributed a fitness, which measures how often players speak depending on the words they use and how often each word is spoken by bilingual individuals. The limiting behavior depends on a single parameter, ϕ, denoting the ratio of the fitness of word A to the fitness of word B. The main objective is to determine whether word A can invade the system and become the new linguistic convention. From the point of view of the mean-field approximation, invasion of word A is successful if and only if ϕ > 3, a result that we also prove for the process on complete graphs relying on the optimal stopping theorem for supermartingales and random walk estimates. In contrast, for the process on the one-dimensional lattice, word A can invade the system whenever ϕ > 1.053, indicating that the probability of invasion and the critical value for ϕ strongly depend on the degree of the graph. The system on regular lattices in higher dimensions is also studied by comparing the process with percolation models.


2014 ◽  
Vol 51 (4) ◽  
pp. 1065-1080 ◽  
Author(s):  
Massimo Campanino ◽  
Dimitri Petritis

Simple random walks on a partially directed version ofZ2are considered. More precisely, vertical edges between neighbouring vertices ofZ2can be traversed in both directions (they are undirected) while horizontal edges are one-way. The horizontal orientation is prescribed by a random perturbation of a periodic function; the perturbation probability decays according to a power law in the absolute value of the ordinate. We study the type of simple random walk that is recurrent or transient, and show that there exists a critical value of the decay power, above which it is almost surely recurrent and below which it is almost surely transient.


Sign in / Sign up

Export Citation Format

Share Document