Development of new decompression brake for heavy duty engine — part 1: Development of operation system and performance

JSAE Review ◽  
1995 ◽  
Vol 16 (3) ◽  
pp. 326
Author(s):  
Y Imai
2013 ◽  
Vol 136 (6) ◽  
Author(s):  
Subenuka Sivagnanasundaram ◽  
Stephen Spence ◽  
Juliana Early

This paper presents an investigation of map width enhancement and the performance improvement of a turbocharger compressor using a series of static vanes in the annular cavity of a classical bleed slot system. The investigation has been carried out using both experimental and numerical analysis. The compressor stage used for this study is from a turbocharger unit used in heavy duty diesel engines of approximately 300 kW. Two types of vanes were designed and added to the annular cavity of the baseline classical bleed slot system. The purpose of the annular cavity vane technique is to remove some of the swirl that can be carried through the bleed slot system, which would influence the pressure ratio. In addition to this, the series of cavity vanes provides a better guidance to the slot recirculating flow before it mixes with the impeller main inlet flow. Better guidance of the flow improves the mixing at the inducer inlet in the circumferential direction. As a consequence, the stability of the compressor is improved at lower flow rates and a wider map can be achieved. The impact of two cavity vane designs on the map width and performance of the compressor was highlighted through a detailed analysis of the impeller flow field. The numerical and experimental study revealed that an effective vane design can improve the map width and pressure ratio characteristic without an efficiency penalty compared to the classical bleed slot system without vanes. The comparison study between the cavity vane and noncavity vane configurations presented in this paper showed that the map width was improved by 14.3% due to a significant reduction in surge flow and the peak pressure ratio was improved by 2.25% with the addition of a series of cavity vanes in the annular cavity of the bleed slot system.


2021 ◽  
Vol 143 (6) ◽  
Author(s):  
Ben Groelke ◽  
John Borek ◽  
Christian Earnhardt ◽  
Chris Vermillion

Abstract This paper presents the design and analysis of a predictive ecological control strategy for a heavy-duty truck that achieves substantial fuel savings while maintaining safe following distances in the presence of traffic. The hallmark of the proposed algorithm is the fusion of a long-horizon economic model predictive controller (MPC) for ecological driving with a command governor (CG) for safe vehicle following. The performance of the proposed control strategy was evaluated in simulation using a proprietary medium-fidelity Simulink model of a heavy-duty truck. Results show that the strategy yields substantial fuel economy improvements over a baseline, the extent of which are heavily dependent on the horizon length of the CG. The best fuel and vehicle-following performance are achieved when the CG horizon has a length of 20–40 s, reducing fuel consumption by 4–6% when compared to a Gipps car-following model.


2021 ◽  
Vol 2141 (1) ◽  
pp. 012007
Author(s):  
Zih-Chun Dai

Abstract Heavy-duty locomotives with large exhaust vehicles have become a common means of transportation for Taiwanese. However, for car owners to increase power output, improve efficiency, and reduce fuel use, the original factory has designed demand settings for cost, environmental protection, and regulations. This leads to the sacrifice of the performance of the original car design, so the RC2 Super ECU is used to replace the original injection computer, and the air-fuel ratio, ignition angle and exhaust pipe are modified. Without the need to change the structure of the heavy locomotive, the horsepower of the heavy locomotive is improved. It is pointed out that the modification of these three original factory settings has greatly improved the overall speed performance of the heavy-duty locomotive horsepower. Therefore, it is proposed that “heavy locomotive performance verification by changing the timing of intake and exhaust” is mainly to verify the performance benefits and performance brought about by modifying the air-fuel ratio, ignition angle and exhaust pipe.


1975 ◽  
Author(s):  
C. P. Lerch ◽  
P. H. Wulff

Final field adjustments to optimize combustion and performance, as well as the comprehensive on site evaluation program performed on this gas turbine, are described in this paper. Included are a description of a series of minor combustion modifications which were easily possible due to the unique single-combustion-chamber design. Tests discussed included measurements of turbine blade operating temperatures and exhaust emissions.


Sign in / Sign up

Export Citation Format

Share Document