scholarly journals Scattering parameters for an Epstein profile in a half-space

1993 ◽  
Vol 6 (4) ◽  
pp. 13-15
Author(s):  
John A. Adam
2019 ◽  
Vol 8 (4) ◽  
pp. 66-73
Author(s):  
Y. Bigdeli ◽  
M. Dehmollaian

We present a semi-analytical method to extract transverse polarizability parameters of an arbitrary bi-anisotropic sub-wavelength scatterer both in homogeneous medium and placed at the boundary of two simple (homogeneous, isotropic, and linear) media. Using this technique, polarizability parameters of various dielectric and/or metallic scatterers are obtained, effectively. In this method, a scatterer is placed at the middle of a rectangular waveguide which in general is filled by two different simple media in either sides of the scatterer. The waveguide is designed so that the two TE10 and TE01 fundamental modes are propagating in a given frequency band. All 16 transverse polarizabilities are fast obtained having 16 different generalized scattering parameters (S-parameters). The S-parameters are associated with excitations at two different ports of the waveguide and the two different modes (TE10 and TE01). Comparing to existing polarizability extraction methods, the presented waveguide method is easy to run, fast and almost accurate. In order to validate the method, we present three examples including omega particle and magneto-dielectric sphere in free-space and an electric resonance particle, placed on top of a dielectric half-space.


2002 ◽  
Vol 715 ◽  
Author(s):  
J. Krc ◽  
M. Zeman ◽  
O. Kluth ◽  
F. Smole ◽  
M. Topic

AbstractThe descriptive scattering parameters, haze and angular distribution functions of textured ZnO:Al transparent conductive oxides with different surface roughness are measured. An approach to determine the scattering parameters of all internal interfaces in p-i-n a-Si:H solar cells deposited on the glass/ZnO:Al substrates is presented. Using the determined scattering parameters as the input parameters of the optical model, a good agreement between the measured and simulated quantum efficiencies of the p-i-n a-Si:H solar cells with different interface roughness is achieved.


2015 ◽  
Vol 37 (4) ◽  
pp. 303-315 ◽  
Author(s):  
Pham Chi Vinh ◽  
Nguyen Thi Khanh Linh ◽  
Vu Thi Ngoc Anh

This paper presents  a technique by which the transfer matrix in explicit form of an orthotropic layer can be easily obtained. This transfer matrix is applicable for both the wave propagation problem and the reflection/transmission problem. The obtained transfer matrix is then employed to derive the explicit secular equation of Rayleigh waves propagating in an orthotropic half-space coated by an orthotropic layer of arbitrary thickness.


2020 ◽  
Vol 2020 (1) ◽  
pp. 74-77
Author(s):  
Simone Bianco ◽  
Luigi Celona ◽  
Flavio Piccoli

In this work we propose a method for single image dehazing that exploits a physical model to recover the haze-free image by estimating the atmospheric scattering parameters. Cycle consistency is used to further improve the reconstruction quality of local structures and objects in the scene as well. Experimental results on four real and synthetic hazy image datasets show the effectiveness of the proposed method in terms of two commonly used full-reference image quality metrics.


Sign in / Sign up

Export Citation Format

Share Document