5-HT and cAMP induce the formation of coated pits and vesicles and increase the expression of clathrin light chain in sensory neurons of aplysia

Neuron ◽  
1993 ◽  
Vol 10 (5) ◽  
pp. 921-929 ◽  
Author(s):  
Yinghe Hu ◽  
Ari Barzilai ◽  
Mary Chen ◽  
Craig H. Bailey ◽  
Eric R. Kandel
2018 ◽  
Vol 217 (12) ◽  
pp. 4253-4266 ◽  
Author(s):  
Hannes Maib ◽  
Filipe Ferreira ◽  
Stéphane Vassilopoulos ◽  
Elizabeth Smythe

Clathrin light chains (CLCs) control selective uptake of a range of G protein–coupled receptors (GPCRs), although the mechanism by which this occurs has remained elusive thus far. In particular, site-specific phosphorylation of CLCb controls the uptake of the purinergic GPCR P2Y12, but it is dispensable for the constitutive uptake of the transferrin receptor (TfR). We demonstrate that phosphorylation of CLCb is required for the maturation of clathrin-coated pits (CCPs) through the transition of flat lattices into invaginated buds. This transition is dependent on efficient clathrin exchange regulated by CLCb phosphorylation and mediated through auxilin. Strikingly, this rearrangement is required for the uptake of P2Y12 but not TfR. These findings link auxilin-mediated clathrin exchange to early stages of CCP invagination in a cargo-specific manner. This supports a model in which CCPs invaginate with variable modes of curvature depending on the cargo they incorporate.


2006 ◽  
Vol 17 (10) ◽  
pp. 4343-4352 ◽  
Author(s):  
Thomas M. Newpher ◽  
Fatima-Zahra Idrissi ◽  
Maria Isabel Geli ◽  
Sandra K. Lemmon

Clathrin-mediated endocytosis is a major pathway for uptake of lipid and protein cargo at the plasma membrane. The lattices of clathrin-coated pits and vesicles are comprised of triskelions, each consisting of three oligomerized heavy chains (HC) bound by a light chain (LC). In addition to binding HC, LC interacts with members of the Hip1/R family of endocytic proteins, including the budding yeast homologue, Sla2p. Here, using in vivo analysis in yeast, we provide novel insight into the role of this interaction. We find that overexpression of LC partially restores endocytosis to cells lacking clathrin HC. This suppression is dependent on the Sla2p binding region of LC. Using live cell imaging techniques to visualize endocytic vesicle formation, we find that the N-terminal Sla2p binding region of LC promotes the progression of arrested Sla2p patches that form in the absence of HC. We propose that LC binding to Sla2p positively regulates Sla2p for efficient endocytic vesicle formation.


Author(s):  
L. M. Marshall

A human erythroleukemic cell line, metabolically blocked in a late stage of erythropoiesis, becomes capable of differentiation along the normal pathway when grown in the presence of hemin. This process is characterized by hemoglobin synthesis followed by rearrangement of the plasma membrane proteins and culminates in asymmetrical cytokinesis in the absence of nuclear division. A reticulocyte-like cell buds from the nucleus-containing parent cell after erythrocyte specific membrane proteins have been sequestered into its membrane. In this process the parent cell faces two obstacles. First, to organize its erythrocyte specific proteins at one pole of the cell for inclusion in the reticulocyte; second, to reduce or abolish membrane protein turnover since hemoglobin is virtually the only protein being synthesized at this stage. A means of achieving redistribution and cessation of turnover could involve movement of membrane proteins by a directional lipid flow. Generation of a lipid flow towards one pole and accumulation of erythrocyte-specific membrane proteins could be achieved by clathrin coated pits which are implicated in membrane endocytosis, intracellular transport and turnover. In non-differentiating cells, membrane proteins are turned over and are random in surface distribution. If, however, the erythrocyte specific proteins in differentiating cells were excluded from endocytosing coated pits, not only would their turnover cease, but they would also tend to drift towards and collect at the site of endocytosis. This hypothesis requires that different protein species are endocytosed by the coated vesicles in non-differentiating than by differentiating cells.


Author(s):  
S.S. Spicer ◽  
B.A. Schulte

Generation of monoclonal antibodies (MAbs) against tissue antigens has yielded several (VC1.1, HNK- 1, L2, 4F4 and anti-leu 7) which recognize the unique sugar epitope, glucuronyl 3-sulfate (Glc A3- SO4). In the central nervous system, these MAbs have demonstrated Glc A3-SO4 at the surface of neurons in the cerebral cortex, the cerebellum, the retina and other widespread regions of the brain.Here we describe the distribution of Glc A3-SO4 in the peripheral nervous system as determined by immunostaining with a MAb (VC 1.1) developed against antigen in the cat visual cortex. Outside the central nervous system, immunoreactivity was observed only in peripheral terminals of selected sensory nerves conducting transduction signals for touch, hearing, balance and taste. On the glassy membrane of the sinus hair in murine nasal skin, just deep to the ringwurt, VC 1.1 delineated an intensely stained, plaque-like area (Fig. 1). This previously unrecognized structure of the nasal vibrissae presumably serves as a tactile end organ and to our knowledge is not demonstrable by means other than its selective immunopositivity with VC1.1 and its appearance as a densely fibrillar area in H&E stained sections.


Author(s):  
Watt W. Webb

Plasma membrane heterogeneity is implicit in the existence of specialized cell surface organelles which are necessary for cellular function; coated pits, post and pre-synaptic terminals, microvillae, caveolae, tight junctions, focal contacts and endothelial polarization are examples. The persistence of these discrete molecular aggregates depends on localized restraint of the constituent molecules within specific domaines in the cell surface by strong intermolecular bonds and/or anchorage to extended cytoskeleton. The observed plasticity of many of organelles and the dynamical modulation of domaines induced by cellular signaling evidence evanescent intermolecular interactions even in conspicuous aggregates. There is also strong evidence that universal restraints on the mobility of cell surface proteins persist virtually everywhere in cell surfaces, not only in the discrete organelles. Diffusion of cell surface proteins is slowed by several orders of magnitude relative to corresponding protein diffusion coefficients in isolated lipid membranes as has been determined by various ensemble average methods of measurement such as fluorescence photobleaching recovery(FPR).


Author(s):  
J.S. Geoffroy ◽  
R.P. Becker

The pattern of BSA-Au uptake in vivo by endothelial cells of the venous sinuses (sinusoidal cells) of rat bone marrow has been described previously. BSA-Au conjugates are taken up exclusively in coated pits and vesicles, enter and pass through an “endosomal” compartment comprised of smooth-membraned tubules and vacuoles and cup-like bodies, and subsequently reside in multivesicular and dense bodies. The process is very rapid, with BSA-Au reaching secondary lysosmes one minute after presentation. (Figure 1)In further investigations of this process an isolated limb perfusion method using an artificial blood substitute, Oxypherol-ET (O-ET; Alpha Therapeutics, Los Angeles, CA) was developed. Under nembutal anesthesia, male Sprague-Dawley rats were laparotomized. The left common iliac artery and vein were ligated and the right iliac artery was cannulated via the aorta with a small vein catheter. Pump tubing, preprimed with oxygenated 0-ET at 37°C, was connected to the cannula.


Author(s):  
Robert P. Apkarian

A multitude of complex ultrastructural features are involved in endothelial cell (EC) gating and sorting of lipid through capillaries and into steroidogenic cells of the adrenal cortex. Correlative microscopy is necessary to distinguish the structural identity of features involved in specific cellular pathways. In addition to diaphragmed fenestrae that frequently appear in clusters, other 60-80 nm openings; plasmalemma vesicles (PV), channels and pockets fitted with diaphragms of the same dimension, coexist on the thin EC surface. Non-diaphragmed coated pits (CP) (100-120 nm) involved in receptor mediated endocytosis were also present on the EC membrane. The present study employed HRSEM of cryofractured and chromium coated specimens and low voltage HRSTEM of 80 nm thick LX-112 embedded sections stained with 2.0% uranyl acetate. Both preparations were imaged at 25 kV with a Topcon DS-130 FESEM equipped with in-lens stage and STEM detector.HRSEM images of the capillary lumen coated with a lnm continuous fine grain Cr film, provided the ability to scan many openings and resolve (SE-I contrast) the fine structure of diaphragm spokes and central densities (Fig. 1).


Sign in / Sign up

Export Citation Format

Share Document