Formation water saturation from drilling fluid filtrate invasion: comparison of displacement modelling and induction well log response

1996 ◽  
Vol 15 (2-4) ◽  
pp. 251-259 ◽  
Author(s):  
U. Bilardo ◽  
C. Alimonti ◽  
A. Chiarabelli ◽  
F.Colacicchi Caetani
2007 ◽  
Vol 10 (06) ◽  
pp. 711-729 ◽  
Author(s):  
Paul Francis Worthington

Summary A user-friendly type chart has been constructed as an aid to the evaluation of water saturation from well logs. It provides a basis for the inter-reservoir comparison of electrical character in terms of adherence to, or departures from, Archie conditions in the presence of significant shaliness and/or low formation-water salinity. Therefore, it constitutes an analog facility. The deliverables include reservoir classification to guide well-log analysis, a protocol for optimizing the acquisition of special core data in support of log analysis, and reservoir characterization in terms of an (analog) porosity exponent and saturation exponent. The type chart describes a continuum of electrical behavior for both water and hydrocarbon zones. This is important because some reservoir rocks can conform to Archie conditions in the fully water-saturated state, but show pronounced departures from Archie conditions in the partially water-saturated state. In this respect, the chart is an extension of earlier approaches that were restricted to the water zone. This extension is achieved by adopting a generalized geometric factor—the ratio of water conductivity to formation conductivity—regardless of the degree of hydrocarbon saturation. The type chart relates a normalized form of this geometric factor to formation-water conductivity, a "shale" conductivity term, and (irreducible) water saturation. The chart has been validated using core data from comprehensively studied reservoirs. A workflow details the application of the type chart to core and/or log data. The analog role of the chart is illustrated for reservoir units that show different levels of non-Archie effects. The application of the method should take rock types, scale effects, the degree of core sampling, and net reservoir criteria into account. The principal benefit is a reduced uncertainty in the choice of a procedure for the petrophysical evaluation of water saturation, especially at an early stage in the appraisal/development process, when adequate characterizing data may not be available. Introduction One of the ever-present problems in petrophysics is how to carry out a meaningful evaluation of well logs in situations where characterizing information from quality-assured core analysis is either unavailable or is insufficient to satisfactorily support the log interpretation. This problem is especially pertinent at an early stage in the life of a field, when reservoir data are relatively sparse. Data shortfalls could be mitigated if there was a means of identifying petrophysical analogs of reservoir character, so that the broader experience of the hydrocarbon industry could be utilized in constructing reservoir models and thence be brought to bear on current appraisal and development decisions. Here, a principal requirement calls for type charts of petrophysical character, on which data from different reservoirs can be plotted and compared, as a basis for aligning approaches to future data acquisition and interpretation. This need manifests itself strongly in the petrophysical evaluation of water saturation, a process that traditionally uses the electrical properties of a reservoir rock to deliver key building blocks for an integrated reservoir model. The solution to this problem calls for an analog facility through which the electrical character of a subject reservoir can be compared with others that have been more comprehensively studied. In this way, the degree of confidence in log-derived water saturation might be reinforced. At the limit, the log analyst needs a reference basis for recourse to capillary pressure data in cases where the well-log evaluation of water saturation turns out to be prohibitively uncertain.


2015 ◽  
Vol 8 (1) ◽  
pp. 354-357
Author(s):  
Shixiong Yuan ◽  
Haimin Guo ◽  
Yu Ding ◽  
Rui Deng

According to core data, this paper studies variation of resistivity in different pore structures and wettability conditions. The results show that with the increase of pore structure index m, the resistivity will increase significantly when the saturation is constant. Similarly, with increasing saturation index n, the resistivity will also increase even with the same saturation. With fixed m and n, the calculated formation water saturation will be very high, resulting in hydrocarbon reservoir being ignored. This variation characteristic is significant for the identification of hidden reservoir with atypical Archie formula.


2021 ◽  
pp. petgeo2021-016
Author(s):  
K. Bredesen ◽  
M. Lorentzen ◽  
L. Nielsen ◽  
K. Mosegaard

A quantitative seismic interpretation study is presented for the Lower Cretaceous Tuxen reservoir in the Valdemar Field, which is associated with heterogeneous and complex geology. Our objective is to better outline the reservoir quality variations of the Tuxen reservoir across the Valdemar Field. Seismic pre-stack data and well logs from two appraisal wells forms the basis of this study. The workflow used includes seismic and rock physics forward modelling, attribute analysis, a coloured inversion and a Bayesian pre-stack inversion for litho-fluid classification. Based on log data, the rock physics properties of the Tuxen interval reveals that the seismic signal is more governed by porosity than water saturation changes at near-offset (or small-angle). The coloured and Bayesian inversion results were generally consistent with well-log observations at the reservoir level and conformed to interpreted horizons. Although the available data has some limitations and the geological setting is complex, the results implied more promising reservoir quality in some areas than others. Hence, the results may offer useful information for delineating the best reservoir zones for further field development and selecting appropriate production strategies.


2017 ◽  
Vol 5 (2) ◽  
pp. 57 ◽  
Author(s):  
Godwin Aigbadon ◽  
A.U Okoro ◽  
Chuku Una ◽  
Ocheli Azuka

The 3-D depositional environment was built using seismic data. The depositional facies was used to locate channels with highly theif zones and distribution of various sedimentary facies. The integration core data and the gamma ray log trend from the wells within the studied interval with right boxcar/right bow-shape indicate muddy tidal flat to mixed tidal flat environments. The bell–shaped from the well logs with the core data indicate delta front with mouth bar, the blocky box- car trend from the well logs with the core data indicate tidal point bar with tidal channel fill. The integration of seismic to well log tie display a good tie in the wells across the field. The attribute map from velocity analysis revealed the presence of hydrocarbons in the identified sands (A, B, C, D1, D2, D4, D5). The major faults F1, F2, F3 and F4 with good sealing capacity are responsible for hydrocarbon accumulation in the field. Detailed petro physical analysis of well log data showed that the studied interval are characterized by sand-shale inter-beds. Eight reservoirs were mapped at depth intervals of 2886m to 3533m with their thicknesses ranging from 12m to 407m. Also the Analysis of the petrophysical results showed that porosity of the reservoirs range from 14% to 28 %; permeability range from 245.70 md to 454.7md; water saturation values from 21.65% to 54.50% and hydrocarbon saturation values from 45.50% to 78.50 %. The by-passed hydrocarbons were identified and estimated in low resistivity pay sands D1, D2 at depth of 2884m – 2940m, sand D5 at depth of 3114m – 3126m respectively. The model serve as a basis for establishing facies model in the field.


1970 ◽  
Vol 10 (1) ◽  
pp. 91 ◽  
Author(s):  
J. W. Burdett ◽  
J. C. Parry ◽  
S. P. Willmott

The Barrow Island oilfield derives 97 percent of its 46,000 barrels per day production from the Lower Cretaceous Windalia Sand. The lithology of the sand, which is 110' + 20' thick across the field, is very finegrained, glauconitic sandstone, shaly and silty in parts and varying from moderately unconsolidated to firm. Thin, hard beds of dolomitic and calcareous, sandstone occur throughout. The sand has high porosity and low permeability.The argillaceous and unconsolidated nature of the formation precludes the use of log interpretation methods based on standard parameters, and it was decided to develop an empirical log evaluation method. In order to calibrate the logs, sixteen of the early wells were fully cored and logged, and the data compared using the Holgate method, which allows two parameters to be correlated to determine their relationship. In the example which is the subjert of this paper, core porosity was correlated against both sonic transit time and bulk density and hence calibration of these log parameters was obtained.The best fit straight line relating porosity and sonic transit time has its origin at 76 microseconds per foot and extrapolates to 246 microseconds per foot at 100 percent porosity. The bulk density — porosity cross plot gives a grain density of 2.71 grams per cubic centimetre and fluid density of 1.16 grans/ cc. The deviations from the standard parameters of delta-t matrix = 56. delta-t fluid = 189, grain density = 1.65, fluid density = 1.0 are explained by the shaliness and lack of compaction of the formation. Using charts for the calculation of water saturation and porosity from induction conductivity and sonic transit time (or bulk density) at 2' intervals through the sand, backed up with traced SP and caliper curves, an evaluation plot of standard format is developed. Intervals of nett effective pay are then chosen.Other evaluation techniques used during the development of the Windalia Poo! include a modified movable oil plot, used in the water injection wells where a saturated saline drilling fluid was employed, and a Sonic-Neutron log comparison for the identification of suspected gas columns in the Windalia.440 wells have now been drilled at Barrow Island, and the empirical evaluation methods evolved have enabled the definition of beds of producible hydrocarbons in all cases.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1057 ◽  
Author(s):  
Mingxuan Zhu ◽  
Li Yu ◽  
Xiong Zhang ◽  
Afshin Davarpanah

Hydrocarbon reservoirs’ formation damage is one of the essential issues in petroleum industries that is caused by drilling and production operations and completion procedures. Ineffective implementation of drilling fluid during the drilling operations led to large volumes of filtrated mud penetrating into the reservoir formation. Therefore, pore throats and spaces would be filled, and hydrocarbon mobilization reduced due to the porosity and permeability reduction. In this paper, a developed model was proposed to predict the filtrated mud saturation impact on the formation damage. First, the physics of the fluids were examined, and the governing equations were defined by the combination of general mass transfer equations. The drilling mud penetration in the core on the one direction and the removal of oil from the core, in the other direction, requires the simultaneous dissolution of water and oil flow. As both fluids enter and exit from the same core, it is necessary to derive the equations of drilling mud and oil flow in a one-dimensional process. Finally, due to the complexity of mass balance and fluid flow equations in porous media, the implicit pressure-explicit saturation method was used to solve the equations simultaneously. Four crucial parameters of oil viscosity, water saturation, permeability, and porosity were sensitivity-analyzed in this model to predict the filtrated mud saturation. According to the results of the sensitivity analysis for the crucial parameters, at a lower porosity (porosity = 0.2), permeability (permeability = 2 mD), and water saturation (saturation = 0.1), the filtrated mud saturation had decreased. This resulted in the lower capillary forces, which were induced to penetrate the drilling fluid to the formation. Therefore, formation damage reduced at lower porosity, permeability and water saturation. Furthermore, at higher oil viscosities, due to the increased mobilization of oil through the porous media, filtrated mud saturation penetration through the core length would be increased slightly. Consequently, at the oil viscosity of 3 cP, the decrease rate of filtrated mud saturation is slower than other oil viscosities which indicated increased invasion of filtrated mud into the formation.


2021 ◽  
Vol 11 (2) ◽  
pp. 601-615
Author(s):  
Tokunbo Sanmi Fagbemigun ◽  
Michael Ayu Ayuk ◽  
Olufemi Enitan Oyanameh ◽  
Opeyemi Joshua Akinrinade ◽  
Joel Olayide Amosun ◽  
...  

AbstractOtan-Ile field, located in the transition zone Niger Delta, is characterized by complex structural deformation and faulting which lead to high uncertainties of reservoir properties. These high uncertainties greatly affect the exploration and development of the Otan-Ile field, and thus require proper characterization. Reservoir characterization requires integration of different data such as seismic and well log data, which are used to develop proper reservoir model. Therefore, the objective of this study is to characterize the reservoir sand bodies across the Otan-Ile field and to evaluate the petrophysical parameters using 3-dimension seismic and well log data from four wells. Reservoir sands were delineated using combination of resistivity and gamma ray logs. The estimation of reservoir properties, such as gross thickness, net thickness, volume of shale, porosity, water saturation and hydrocarbon saturation, were done using standard equations. Two horizons (T and U) as well as major and minor faults were mapped across the ‘Otan-Ile’ field. The results show that the average net thickness, volume of shale, porosity, hydrocarbon saturation and permeability across the field are 28.19 m, 15%, 37%, 71% and 26,740.24 md respectively. Two major faults (F1 and F5) dipping in northeastern and northwestern direction were identified. The horizons were characterized by structural closures which can accommodate hydrocarbon were identified. Amplitude maps superimposed on depth-structure map also validate the hydrocarbon potential of the closures on it. This study shows that the integration of 3D seismic and well log data with seismic attribute is a good tool for proper hydrocarbon reservoir characterization.


2021 ◽  
Vol 54 (2E) ◽  
pp. 186-197
Author(s):  
Maan Al-Majid

The Early Miocene Euphrates Formation is characterized by its oil importance in the Qayyarah oil field and its neighboring fields. This study relied on the core and log data analyses of two wells in the Qayyarah oil field. According to the cross-plot’s information, the Euphrates Formation is mainly composed of dolomite with varying proportions of limestone and shale. Various measurements to calculate the porosity, permeability, and water saturation on the core samples were made at different depths in the two studied wells Qy-54 and Qy-55. A relationship between water saturation and capillary pressure has been plotted for some core samples to predict sites of normal compaction in the formation. The line regression for this relationship was considered as a function of the ratio of large voids to the total volume of voids in the sample. The coefficient of determination parameter was used in estimating the amount of homogeneity in the sizes of the voids, as it was observed to increase significantly at the sites of shale. After dividing the formation into several zones, the well log data were analyzed to predict the locations of oil presence in both wells. The significance of the negative secondary porosity in detecting the hydrocarbon sites in the Euphrates Formation was deduced by its correspondence with the large increase in the true resistivity values in both wells. More than 90% of the formation parts represent reservoir rocks in both wells, but only about 75% of them are oil reservoirs in the well Qy-54 and nearly 50% of them are oil reservoirs in the well Qy-55.


Sign in / Sign up

Export Citation Format

Share Document