Rapid solidification of Cu25at.% Ni alloy: molecular dynamics simulations using embedded atom method

1996 ◽  
Vol 214 (1-2) ◽  
pp. 139-145 ◽  
Author(s):  
Chen Kuiying ◽  
Sha Xianwei ◽  
Zhang Xiumu ◽  
Li Yiyi
2018 ◽  
Vol 32 (11) ◽  
pp. 1850133
Author(s):  
J. H. Xia ◽  
Xue-Mei Gao

In this work, the segregation and structural transitions of CoNi clusters, between 1500 and 300 K, have been investigated using molecular dynamics simulations with the embedded atom method potential. The radial distribution function was used to analyze the segregation during the cooling processes. It is found that Co atoms segregate to the inside and Ni atoms preferably to the surface during the cooling processes, the Co[Formula: see text]Ni[Formula: see text] cluster becomes a core–shell structure. We discuss the structural transition according to the pair-correction function and pair-analysis technique, and finally the liquid Co[Formula: see text]Ni[Formula: see text] crystallizes into the coexistence of hcp and fcc structure at 300 K. At the same time, it is found that the frozen structure of CoNi cluster is strongly related to the Co concentration.


2013 ◽  
Vol 1514 ◽  
pp. 37-42 ◽  
Author(s):  
Prithwish K. Nandi ◽  
Jacob Eapen

ABSTRACTMolecular dynamics simulations are performed to investigate the defect accumulation and microstructure evolution in hcp zirconium (Zr) – a material which is widely used as clad for nuclear fuel. Cascades are generated with a 3 keV primary knock-on atom (PKA) using an embedded atom method (EAM) potential with interactions modified for distances shorter than 0.1 Å. With sequential cascade simulations we show the emergence of stacking faults both in the basal and prism planes, and a Shockley partial dislocation on the basal plane.


2007 ◽  
Vol 539-543 ◽  
pp. 3528-3533
Author(s):  
X.W. Zhou ◽  
D.A. Murdick ◽  
B. Gillespie ◽  
J.J. Quan ◽  
Haydn N.G. Wadley ◽  
...  

The atomic-scale structures and properties of thin films are critically determined by the various kinetic processes activated during their atomic assembly. Molecular dynamics simulations of growth allow these kinetic processes to be realistically addressed at a timescale that is difficult to reach using ab initio calculations. The newest approaches have begun to enable the growth simulation to be applied for a wide range of materials. Embedded atom method potentials can be successfully used to simulate the growth of closely packed metal multilayers. Modified charge transfer ionic + embedded atom method potentials are transferable between metallic and ionic materials and have been used to simulate the growth of metal oxides on metals. New analytical bond order potentials are now enabling significantly improved molecular dynamics simulations of semiconductor growth. Selected simulations are used to demonstrate the insights that can be gained about growth processes at surfaces.


2012 ◽  
Vol 706-709 ◽  
pp. 1337-1342
Author(s):  
Akira Takeuchi ◽  
Akihisa Inoue

Molecular dynamics (MD) simulations were performed for a Zr2Ni alloy by referring to crystallographic features of a metastable Zr2Ni phase. Simulation method was identical to our previous studies named plastic crystal model (PCM), which includes crystallographic operations for an intermetallic compound in terms of the random rotations of hypothetical clusters around their center of gravity and subsequent annealing at a low temperature. On the basis of MD-PCM, the present study considers an additional refinement named united atom scheme (UAS) on the motions of atoms in the hypothetical clusters. In MD-PCM-UAS, Dreiding potential was assigned for atomic bonds in a cluster whereas Generalized Embedded Atom Method potential for the other atomic pairs. The simulation results by MD-PCM-UAS yield a liquid-like structure. However, annealing did not cause subsequent structural relaxation, which differs from the results by MD-PCM and conventional MD simulations. Further simulations based on MD-PCM-UAS were performed for a nanostructure comprising clusters and glue atoms, leading to the best fit with the experimental data.


Sign in / Sign up

Export Citation Format

Share Document