Electrochemical deposition of conducting polymers onto electronic substrates for sensor applications

1990 ◽  
Vol 23 (1-3) ◽  
pp. 911-914 ◽  
Author(s):  
P.N. Bartlett ◽  
J.W. Gardner ◽  
R.G. Whitaker
Chemosensors ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 149
Author(s):  
André Olean-Oliveira ◽  
Gilberto A. Oliveira Brito ◽  
Celso Xavier Cardoso ◽  
Marcos F. S. Teixeira

The use of graphene and its derivatives in the development of electrochemical sensors has been growing in recent decades. Part of this success is due to the excellent characteristics of such materials, such as good electrical and mechanical properties and a large specific surface area. The formation of composites and nanocomposites with these two materials leads to better sensing performance compared to pure graphene and conductive polymers. The increased large specific surface area of the nanocomposites and the synergistic effect between graphene and conducting polymers is responsible for this interesting result. The most widely used methodologies for the synthesis of these materials are still based on chemical routes. However, electrochemical routes have emerged and are gaining space, affording advantages such as low cost and the promising possibility of modulation of the structural characteristics of composites. As a result, application in sensor devices can lead to increased sensitivity and decreased analysis cost. Thus, this review presents the main aspects for the construction of nanomaterials based on graphene oxide and conducting polymers, as well as the recent efforts made to apply this methodology in the development of sensors and biosensors.


2017 ◽  
Vol 31 (31) ◽  
pp. 1750287
Author(s):  
Sherin Joseph ◽  
A. V. Ramesh Kumar ◽  
Reji John

Lead zirconate titanate (PZT) is one of the most important piezoelectric materials widely used for underwater sensors. However, PZTs are hard and non-compliant and hence there is an overwhelming attention devoted toward making it flexible by preparing films on flexible substrates by different routes. In this work, the electrochemical deposition of composition controlled PZT films over flexible stainless steel (SS) foil substrates using non-aqueous electrolyte dimethyl sulphoxide (DMSO) was carried out. Effects of various key parameters involved in electrochemical deposition process such as current density and time of deposition were studied. It was found that a current density of 25 mA/cm2 for 5 min gave a good film. The morphology and topography evaluation of the films was carried out by scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively, which showed a uniform morphology with a surface roughness of 2 nm. The PZT phase formation was studied using X-ray diffraction (XRD) and corroborated with Raman spectroscopic studies. The dielectric constant, dielectric loss, hysteresis and I–V characteristics of the film was evaluated.


2012 ◽  
Vol 79 ◽  
pp. 81-86 ◽  
Author(s):  
M. Federica de Riccardis ◽  
V. Martina ◽  
Daniela Carbone ◽  
Paolo Rotolo

The combination of nanoparticles and conducting polymers, known as hybrid conducting nanocomposites, is a new emerging field. The combination of conductive polymers, such as polyaniline (PANI), with conductive carbon nanotubes (CNTs) has already shown some synergistic properties. As a consequence, they have a variety of applications, such as sensors, actuators, touch screens, etc.. Usually PANI and CNTs are combined by using electrochemical synthesis starting with the monomer aniline. In this work PANI-CNTs nanocomposite films were obtained by using different combinations of two methods, Electrochemical Deposition (ELD) and Electrophoretic Deposition (EPD). The samples prepared by using these combined methods were compared with the material prepared by the usual electrochemical synthesis. Therefore, all the films so prepared were characterised and their electrochemical properties were investigated, particularly for evaluating their use as supercapacitor components.


2007 ◽  
Vol 38 (2) ◽  
pp. 259-268 ◽  
Author(s):  
Sonia Domínguez-Domínguez ◽  
Joaquín Arias-Pardilla ◽  
Ángel Berenguer-Murcia ◽  
Emilia Morallón ◽  
Diego Cazorla-Amorós

2020 ◽  
Vol 10 (1) ◽  
pp. 351-364 ◽  
Author(s):  
Sara A. Alqarni ◽  
Mahmoud A. Hussein ◽  
Aisha A. Ganash ◽  
Anish Khan

Sign in / Sign up

Export Citation Format

Share Document