A preliminary investigation of continuous flow reactor treatment of contaminated soils

1993 ◽  
Vol 13 (5-7) ◽  
pp. 535
Author(s):  
Joseph H. Sherrard ◽  
Dennis D. Truax
Author(s):  
Charlotte Wiles ◽  
Marcus J Hammond ◽  
Paul Watts

We report the use of an immobilised form of Candida antarctica lipase B, Novozym® 435, in a preliminary investigation into the development of a continuous flow reactor capable of performing the chemo-enzymatic oxidation of alkenes in high yield and purity, utilising the commercially available oxidant hydrogen peroxide (100 volumes). Initial investigations focussed on the lipase-mediated oxidation of 1-methylcyclohexene, with the optimised reaction conditions subsequently employed for the epoxidation of an array of aromatic and aliphatic alkenes in 97.6 to 99.5% yield and quantitative purity.


2018 ◽  
Vol 69 (6) ◽  
pp. 1363-1366 ◽  
Author(s):  
Stefania Daniela Bran ◽  
Petre Chipurici ◽  
Mariana Bran ◽  
Alexandru Vlaicu

This paper has aimed at evaluating the concentration of bioethanol obtained using sunflower stem as natural support, molasses as carbon source and Saccharomyces cerevisiae yeast in a continuous flow reactor. The natural support was tested to investigate the immobilization/growth of S. cerevisiae yeast. The concentration of bioethanol produced by fermentation was analyzed by gas chromatography using two methods: aqueous solutions and extraction in organic phase. The CO2 flow obtained during the fermentation process was considered to estimate when the yeast was deactivated. The laboratory experiments have highlighted that the use of plant-based wastes to bioconversion in ethanol could be a non-pollutant and sustainable alternative.


2020 ◽  
Vol 8 (35) ◽  
pp. 13195-13205 ◽  
Author(s):  
Swathi Mukundan ◽  
Daria Boffito ◽  
Abhijit Shrotri ◽  
Luqman Atanda ◽  
Jorge Beltramini ◽  
...  

2019 ◽  
Vol 18 (2) ◽  
pp. 314-318 ◽  
Author(s):  
Martin Dilla ◽  
Ahmet E. Becerikli ◽  
Alina Jakubowski ◽  
Robert Schlögl ◽  
Simon Ristig

Newly developed tubular reactor geometry allows intensive gas–solid interaction in photocatalytic gas-phase CO2 reduction.


2017 ◽  
Vol 115 (3) ◽  
pp. 606-616 ◽  
Author(s):  
Stephanie A. Parker ◽  
Linus Amarikwa ◽  
Kevin Vehar ◽  
Raquel Orozco ◽  
Scott Godfrey ◽  
...  

2006 ◽  
Vol 691 (24-25) ◽  
pp. 5197-5203 ◽  
Author(s):  
Zenon Lysenko ◽  
Bob R. Maughon ◽  
Tezi Mokhtar-Zadeh ◽  
Michael L. Tulchinsky

Sign in / Sign up

Export Citation Format

Share Document