A power law model for the flow stress and strain-rate sensitivity in CP titanium

1995 ◽  
Vol 33 (1) ◽  
pp. 157-162 ◽  
Author(s):  
R.E. Reed-Hill ◽  
C.V. Iswaran ◽  
M.J. Kaufman
1997 ◽  
Vol 43 (145) ◽  
pp. 408-410 ◽  
Author(s):  
M. E. Manley ◽  
E. M. Schulson

AbstractA power law relation between stress and strain rate of the formwas used to describe the response to strain rate of S1 ice loaded across the columns at –10° C. The rate exponent,n, decreased with increasing strain from about 4.6 at an observed peak on the load displacement curve to approximately 2.6 at a shortening of 2%. Analysis of these results and of the results of other authors on different forms of ice deformed at the same temperature suggests that the power law exponent,nis proportional toFc/FgThe parameterFc/Fgis the far-field basal dislocation climb force divided by the glide force.


1997 ◽  
Vol 43 (145) ◽  
pp. 408-410
Author(s):  
M. E. Manley ◽  
E. M. Schulson

AbstractA power law relation between stress and strain rate of the form was used to describe the response to strain rate of S1 ice loaded across the columns at –10° C. The rate exponent, n, decreased with increasing strain from about 4.6 at an observed peak on the load displacement curve to approximately 2.6 at a shortening of 2%. Analysis of these results and of the results of other authors on different forms of ice deformed at the same temperature suggests that the power law exponent, n is proportional to Fc/Fg The parameter Fc/Fg is the far-field basal dislocation climb force divided by the glide force.


2007 ◽  
Vol 22 (4) ◽  
pp. 926-936 ◽  
Author(s):  
A.A. Elmustafa ◽  
S. Kose ◽  
D.S. Stone

Finite element analysis is used to simulate indentation creep experiments with a cone-shaped indenter. The purpose of the work is to help identify the relationship between the strain-rate sensitivity of the hardness, νH, and that of the flow stress, νσ in materials for which elastic deformations are significant. In general, νH differs from νσ, but the ratio νH/νσ is found to be a unique function of H/E* where H is the hardness and E* is the modulus relevant to Hertzian contact. νH/νσ approaches 1 for small H/E*, 0 for large H/E*, and is insensitive to work hardening. The trend in νH/νσ as a function of H/E* can be explained based on a generalized analysis of Tabor’s relation in which hardness is proportional to the flow stress H = k × σeff and in which the proportionality factor k is a function of σeff/E*.


Author(s):  
J. K. Wright ◽  
J. A. Simpson ◽  
R. N. Wright ◽  
L. J. Carroll ◽  
T. L. Sham

The flow stress of many materials is a function of the applied strain rate at elevated temperature. The magnitude of this effect is captured by the strain rate sensitivity parameter “m”. The strain rate sensitivity of two face–center cubic solid solution alloys that are proposed for use in high temperature heat exchanger or steam generator applications, Alloys 800H and 617, has been determined as a function of temperature over that range of temperatures relevant for these applications. In addition to determining the strain rate sensitivity, it is important for nuclear design within Section III of the ASME Boiler and Pressure Vessel Code to determine temperature below which the flow stress is not affected by the strain rate. This temperature has been determined for both Alloy 800H and Alloy 617. At high temperature the strain rate sensitivity of the two alloys is significant and they have similar m values. For Alloy 617 the temperature limit below which little or no strain rate sensitivity is observed is approximately 700°C. For Alloy 800H this temperature is approximately 650°C.


1994 ◽  
Vol 364 ◽  
Author(s):  
S. S. Ezz ◽  
Y. Q. Sun ◽  
P. B. Hirsch

AbstractThe strain rate sensitivity ß of the flow stress τ is associated with workhardening and β=(δτ/δln ε) is proportional to the workhardening increment τh = τ - τy, where τy is the strain rate independent yield stress. The temperature dependence of β/τh reflects changes in the rate controlling mechanism. At intermediate and high temperatures, the hardening correlates with the density of [101] dislocations on (010). The nature of the local obstacles at room temperature is not established.


Sign in / Sign up

Export Citation Format

Share Document