NITRATION OF 8-HYDROXYQUINOLINE WITH DILUTE NITRIC ACID AND NITROUS ACID

1964 ◽  
pp. 97-101
Author(s):  
T. URBAŃSKI ◽  
W. KUTKIEWICZ
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tetsuichi Takagi ◽  
Ki-Cheol Shin ◽  
Mayumi Jige ◽  
Mihoko Hoshino ◽  
Katsuhiro Tsukimura

AbstractKaolin deposits in the Seto-Tono district, central Japan, were formed by intense kaolinization of lacustrine arkose sediments deposited in small and shallow inland lakes in the late Miocene. Based on mineralogical and stable isotopic (Fe, C, N) studies of Motoyama kaolin deposit in the Seto area, we concluded that it was formed by microbial nitrification and acidification of lacustrine sediments underneath an inland lake. Small amounts of Fe–Ti oxides and Fe-hydroxide in the kaolin clay indicated that iron was oxidized and leached during the kaolinization. The field occurrences indicate that leached ferric iron precipitated on the bottom of the kaolin deposit as limonite crusts, and their significantly fractionated Fe isotope compositions suggest the involvement of microbial activity. The C/N ratios of most of the kaolin clay are distinctly higher than those of modern lacustrine sediment. Although, the possibility of a low-temperature hydrothermal origin of the kaolin deposit cannot be completely ruled out, it is more likely that acidification by dilute nitric acid formed from plant-derived ammonia could have caused the kaolinization, Fe oxidation and leaching. The nitrate-dependent microbial Fe oxidation is consistent with dilute nitric acid being the predominant oxidant.


Of the commoner mineral acids the chemical changes of Nitric Acid, from their evident complexity, have formed the subject of numerous memoirs, while those of sulphuric acid, from their assumed simplicity, have been to some degree neglected; on the other hand, the physical properties of the latter have been studied with considerable elaboration, while those of the former have been passed over, doubtless on account of the corrosive nature of the acid and the difficulty of preparing and preserving it in a reasonable degree of purity. Further, with certain exceptions, the alterations in physical properties induced by the products of reduction, be they nitrogen peroxide or nitrous acid, either singly or conjointly, have attracted but little attention, though it is a common matter of observation that the current intensity of a Grove’s or other cell containing nitric acid remains constant, even though the fuming acid, originally colourless or red, has become of a deep green tint. It is more than probable that of the factors of Ohm’s law, both the E. M. F. and internal resistance are continually varying. At the earliest stages of the enquiry it was found that the passage of a few bubbles of nitric oxide gas into a considerable volume of nitric acid produced an alteration of one percent, in the resistance, and the same result could be effected to a less degree by exposure to sunlight, and to a still less degree by exposure to artificial illumination. Therefore, we determined to investigate the alterations of conductivity produced by changes of concentration and temperature in samples of acid purified with necessary precautions, more especially as former workers upon the subject have either used samples of acid confessedly impure, or have been silent as to any method of purification, or have adopted no special care in dealing with a substance so susceptible of polarisation.


2019 ◽  
Vol 11 (46) ◽  
pp. 5857-5863 ◽  
Author(s):  
Marianela Savio ◽  
Lucimar L. Fialho ◽  
Joaquim A. Nóbrega

The combination of dilute nitric acid digestion followed by recovery of the acid digests, represents steps towards green chemistry approaches: “reduce the use, recycle and reuse”, strictly following the major green chemistry recommendations.


1982 ◽  
Vol 31 (11) ◽  
pp. E409-E412 ◽  
Author(s):  
Yuzo TAMARI ◽  
Yukiharu INOUE ◽  
Haruo TSUJI ◽  
Yuzuru KUSAKA

2006 ◽  
Vol 3 (1) ◽  
pp. 31 ◽  
Author(s):  
Kevin C. Clemitshaw

Environmental Context.Nitrous acid (HONO) is formed in the troposphere in urban, rural and remote environments via several uncertain heterogeneous and photochemical processes that involve nitric acid (HNO3). A recently recognised process is initiated by the deposition and migration of HNO3 within snow-pack surfaces to form nitrate anions (NO3−). Photo-reduction of NO3− followed by acidification of the nitrite (NO2−) photo-product leads to emissions of gas-phase HONO. Seasonal observations at Halley, Antarctica are consistent with the formation of HONO via this process, which is potentially of global significance because much of the Earth’s land (and sea) surface is covered with snow and is sunlit for much of the year. Both HONO and HNO3 significantly influence the production of ozone (O3), which acts as a greenhouse gas in the troposphere, via their respective roles as a source of hydroxyl radicals (OH•) and as a sink for OH• and nitrogen dioxide (NO2). Abstract.The tropospheric photochemistry of nitrous acid (HONO) and its coupling with that of nitric acid (HNO3) in urban, rural and remote atmospheres are highlighted in terms of established and uncertain homogeneous and heterogeneous sources and sinks, together with known and potential effects and impacts. Observations made at Halley, Antarctica, via optical detection of an azo dye derivative of HONO are consistent with snow-pack photochemical production of HONO, which has potential significance for the production of hydroxyl radicals (OH•) and ozone (O3) on regional and global scales. Recent developments in measurement methods for HONO and HNO3 are also highlighted. It is now timely to conduct a formal intercomparison of the methods in order to evaluate and enhance their capabilities, and to validate the growing body of HONO and HNO3 data obtained in urban, rural and remote locations.


2020 ◽  
Vol 44 (36) ◽  
pp. 15625-15635
Author(s):  
Shuang Ni ◽  
Feng-Yang Bai ◽  
Xiu-Mei Pan

The properties of (HNO3)(HONO)(H2O)n (n = 1–6) clusters are reported including thermodynamics, structures, temperature-dependence, intermolecular forces, optical properties, and evaporation rates.


Sign in / Sign up

Export Citation Format

Share Document