INTERACTION OF THE GRAVITY WAVES WITH THE IONOSPHERIC E-REGION PLASMA AND THE EXCITATION OF PLASMA INSTABILITIES

Author(s):  
S. Prakash ◽  
R. Pandey
2005 ◽  
Vol 23 (7) ◽  
pp. 2385-2390 ◽  
Author(s):  
F. Onoma ◽  
Y. Otsuka ◽  
K. Shiokawa ◽  
T. Ogawa ◽  
M. Yamamoto ◽  
...  

Abstract. We report simultaneous observations of atmospheric gravity waves (AGW) in OI (557.7nm) and OH airglow images and VHF radar backscatter from field-aligned irregularities (FAI) in the E-region during the SEEK-2 (Sporadic-E Experiment over Kyushu 2) campaign period from 29 July to 9 August 2002. An all-sky imager was operated at Nishino-Omote (30.5 N, 130.1 E), Japan. On 14 nights, 17 AGW events were detected in OI and OH airglow images. AGW propagated mostly toward the northeast or southeast. From comparison with the E-region FAI occurrence, which is detected by a nearby VHF radar (31.57MHz), we found that AGW tended to propagate southeastward during FAI events. This result suggests that the interaction between AGW and E-region plasma plays an important role in generating FAI. Furthermore, polarization electric fields generated directly by AGW may contribute to the FAI generation. Keywords. Atmospheric composition and structure (Airglow and aurora), Ionosphere (Ionospheric irregularities, Mid-latitude ionosphere)


2009 ◽  
Vol 27 (4) ◽  
pp. 1509-1520 ◽  
Author(s):  
D. T. Farley

Abstract. In this short tutorial we first briefly review the basic physics of the E-region of the equatorial ionosphere, with emphasis on the strong electrojet current system that drives plasma instabilities and generates strong plasma waves that are easily detected by radars and rocket probes. We then discuss the instabilities themselves, both the theory and some examples of the observational data. These instabilities have now been studied for about half a century (!), beginning with the IGY, particularly at the Jicamarca Radio Observatory in Peru. The linear fluid theory of the important processes is now well understood, but there are still questions about some kinetic effects, not to mention the considerable amount of work to be done before we have a full quantitative understanding of the limiting nonlinear processes that determine the details of what we actually observe. As our observational techniques, especially the radar techniques, improve, we find some answers, but also more and more questions. One difficulty with studying natural phenomena, such as these instabilities, is that we cannot perform active cause-and-effect experiments; we are limited to the inputs and responses that nature provides. The one hope here is the steadily growing capability of numerical plasma simulations. If we can accurately simulate the relevant plasma physics, we can control the inputs and measure the responses in great detail. Unfortunately, the problem is inherently three-dimensional, and we still need somewhat more computer power than is currently available, although we have come a long way.


1990 ◽  
Vol 52 (6-8) ◽  
pp. 431-438 ◽  
Author(s):  
I Häggström ◽  
H Opgenoorth ◽  
P.J.S Williams ◽  
G.O.L Jones ◽  
K Schlegel

2008 ◽  
Vol 26 (7) ◽  
pp. 1865-1876 ◽  
Author(s):  
D. V. Phanikumar ◽  
A. K. Patra ◽  
C. V. Devasia ◽  
G. Yellaiah

Abstract. In this paper, we present seasonal variation of E region field-aligned irregularities (FAIs) observed using the Gadanki radar and compare them with the seasonal variation of Es observed from a nearby location SHAR. During daytime, FAIs occur maximum in summer and throughout the day, as compared to other seasons. During nighttime, FAIs occur equally in both summer and winter, and relatively less in equinoxes. Seasonal variations of Es (i.e. ftEs and fbEs) show that the daytime activity is maximum in summer and the nighttime activity is maximum in equinoxes. No relation is found between FAIs occurrence/SNR and ftEs/fbEs. FAIs occurrence, however, is found to be related well with (ftEs−fbEs). This aspect is discussed in the light of the present understanding of the mid-latitude Es-FAIs relationship. The seasonal variations of FAIs observed at Gadanki are compared in detail with those of Piura, which show a significant difference in the daytime observations. The observed difference has been discussed considering the factors governing the generation of FAIs.


2010 ◽  
Vol 10 (6) ◽  
pp. 1197-1208 ◽  
Author(s):  
P. Nenovski ◽  
Ch. Spassov ◽  
M. Pezzopane ◽  
U. Villante ◽  
M. Vellante ◽  
...  

Abstract. Ionograms from Rome (41.8N, 12.5E) and Sofia (42.4N, 23.2E) ionospheric stations during earthquake (EQ) activity with magnitude (M) between 5 and 6 in Central Italy are analyzed. It is found that several ionospheric disturbances occur in the intermediate E-F region before the EQ shock. In fact, besides sporadic E (Es) layer development (of type h) of short duration (transients), fmin increase, trace gaps near the critical frequencies, and E region trace disappearance are also observed within one to three hours before the EQ shock. Before the EQ shocks we find that the F2 region parameters are practically undisturbed. The only exception is the so-called fork trace that appears mostly near the critical frequency of the F2 region. Acoustic gravity waves (AGW) are suggested as one of the possible sources of transients observed in the ionosphere before the EQ shock.


1994 ◽  
Vol 56 (13-14) ◽  
pp. 1853-1870 ◽  
Author(s):  
T.A. Blix ◽  
E.V. Thrane ◽  
S. Kirkwood ◽  
K. Schlegel

2011 ◽  
Vol 73 (17-18) ◽  
pp. 2444-2452 ◽  
Author(s):  
H.S.S. Sinha ◽  
R. Pandey ◽  
Shweta Sharma ◽  
R.N. Misra

Sign in / Sign up

Export Citation Format

Share Document