scholarly journals Relationship between propagation direction of gravity waves in OH and OI airglow images and VHF radar echo occurrence during the SEEK-2 campaign

2005 ◽  
Vol 23 (7) ◽  
pp. 2385-2390 ◽  
Author(s):  
F. Onoma ◽  
Y. Otsuka ◽  
K. Shiokawa ◽  
T. Ogawa ◽  
M. Yamamoto ◽  
...  

Abstract. We report simultaneous observations of atmospheric gravity waves (AGW) in OI (557.7nm) and OH airglow images and VHF radar backscatter from field-aligned irregularities (FAI) in the E-region during the SEEK-2 (Sporadic-E Experiment over Kyushu 2) campaign period from 29 July to 9 August 2002. An all-sky imager was operated at Nishino-Omote (30.5 N, 130.1 E), Japan. On 14 nights, 17 AGW events were detected in OI and OH airglow images. AGW propagated mostly toward the northeast or southeast. From comparison with the E-region FAI occurrence, which is detected by a nearby VHF radar (31.57MHz), we found that AGW tended to propagate southeastward during FAI events. This result suggests that the interaction between AGW and E-region plasma plays an important role in generating FAI. Furthermore, polarization electric fields generated directly by AGW may contribute to the FAI generation. Keywords. Atmospheric composition and structure (Airglow and aurora), Ionosphere (Ionospheric irregularities, Mid-latitude ionosphere)

2005 ◽  
Vol 23 (7) ◽  
pp. 2377-2384 ◽  
Author(s):  
T. Yokoyama ◽  
M. Yamamoto ◽  
S. Fukao ◽  
T. Takahashi ◽  
M. Tanaka

Abstract. Observational campaigns of the mid-latitude ionospheric E-region with sounding rockets and ground-based instruments were conducted in 1996 (SEEK) and 2002 (SEEK-2). Both of them were successfully conducted to bring important findings about the mid-latitude E-region and quasi-periodic (QP) VHF radar echoes. The observational results in the SEEK and the SEEK-2 are compared with numerical simulations and discussed in this paper. While sporadic-E (Es)-layers are actually formed by the observed neutral wind, it is difficult for the constant wind shear to produce the sharp Es-layer gradient. However, once they are formed in the lower E-region, they cannot easily be dissipated by the simple diffusive motion. The polarization electric field, calculated under the condition at the rocket launch time, shows similar amplitude and structure to the measurement around the Es-layer altitude. The structure of the plasma density and the electric field above the Es-layer observed in the SEEK-2 showed a wave-like pattern up to an altitude of 150 km. Considering a mapping of the polarization electric field generated within the Es-layers, gravity waves are the possible source of the wave-like structure of the measured electric fields and sub-peaks of the electron density above the main Es-layers. Fluctuation of the measured magnetic field is reproduced by Hall or field-aligned current driven by the polarization electric field. The current theoretical models for QP echoes and the polarization electric field are basically verified by the discussion in this paper. Keywords. Ionospheric irregularities – Mid-latitude ionosphere – Numerical simulation studies


2006 ◽  
Vol 24 (5) ◽  
pp. 1411-1418 ◽  
Author(s):  
S. Fukao ◽  
T. Yokoyama ◽  
T. Tayama ◽  
M. Yamamoto ◽  
T. Maruyama ◽  
...  

Abstract. The zonal structure of radar backscatter plumes associated with Equatorial Spread F (ESF), probably modulated by atmospheric gravity waves, has been investigated with the Equatorial Atmosphere Radar (EAR) in West Sumatra, Indonesia (0.20° S, 100.32° E; dip latitude 10.1° S) and the FM-CW ionospheric sounders on the same magnetic meridian as the EAR. The occurrence locations and zonal distances of the ESF plumes were determined with multi-beam observations with the EAR. The ESF plumes drifted eastward while keeping distances of several hundred to a thousand kilometers. Comparing the occurrence of the plumes and the F-layer uplift measured by the FM-CW sounders, plumes were initiated within the scanned area around sunset only, when the F-layer altitude rapidly increased. Therefore, the PreReversal Enhancement (PRE) is considered as having a zonal variation with the scales mentioned above, and this variation causes day-to-day variability, which has been studied for a long time. Modulation of the underlying E-region conductivity by gravity waves, which causes inhomogeneous sporadic-E layers, for example, is a likely mechanism to determine the scale of the PRE.


2017 ◽  
Vol 122 (12) ◽  
pp. 12,517-12,533 ◽  
Author(s):  
J. Moro ◽  
L. C. A. Resende ◽  
C. M. Denardini ◽  
J. Xu ◽  
I. S. Batista ◽  
...  

2021 ◽  
Author(s):  
Mani Sivakandan ◽  
Jorge L Chau ◽  
Carlos Martinis ◽  
Yuichi Otsuka ◽  
Jens Mielich ◽  
...  

<p>Northwest to southeast phase fronts with southwestward moving features are commonly observed in the nighttime midlatitude ionosphere during the solstice months at low solar activity. These features are identified as nighttime MSTIDs (medium scale traveling ionospheric disturbances). Initially, they were considered to be a manifestation of neutral atmospheric gravity waves. Later on, investigations showed that the nighttime MSTIDs are electrified in nature and mostly confined to the mid and low latitude ionosphere. Although the overall characteristics of the nighttime MSTIDs are mostly well understood, the causative mechanisms are not well known. Perkins instability mechanism was believed to be the cause of nighttime MSTIDs, however, the growth rate of the instability is too small to explain the perturbations observed. Recently, model simulations and observational studies suggest that coupling between sporadic-E layers and other type of E-region instabilities, and the F region may be relevant to explain the generation of the MSTIDs.</p><p>In the present study simultaneous observation from OI 630 nm all-sky airglow imager, GPS-TEC, ionosonde and Meteor radars, are used to investigate the role of E and F region coupling on the generation of MSTIDs .Nighttime MSTIDs observed on three nights (14 March 2020, 23 March 2020 and 28 May 2020) in the OI 630 nm airglow images over Kuehlungsborn (54°07'N; 11°46'E, 53.79N  mag latitude), Germany, are presented. Simultaneous detrended GPS-TEC measurements also shows presence of MSTIDs on these nights. In addition, simultaneous ionosonde observations over Juliusruh (54°37.7'N 13°22.5'E) show spread-F in the ionograms as well as sporadic-E layer occurrence.  Furthermore, we also investigate the MLT region wind variations during these nights. The role of Es-layers and the interplay between the winds and Es-layers role on the generation of the MSTIDs will be discussed in detail in this presentation.</p><p> </p>


2004 ◽  
Vol 22 (11) ◽  
pp. 3799-3804 ◽  
Author(s):  
C. J. Pan ◽  
P. B. Rao

Abstract. We report on the field-aligned irregularities observed in the low-latitude sporadic E-layer (Es) with the Gadanki (13.5° N, 79.2° E; geomagnetic latitude 6.3° N) VHF radar. The radar was operated intermittently for 15 days during the summer months in 1998 and 1999, for both daytime and nighttime observation. The total observation periods are 161h for the nighttime and 68h for the daytime. The observations were used to study the percentage of occurrence of the E-region echoes for both daytime and nighttime. The statistical characteristics of the mean radial velocity and spectral width are presented for three cases based on the echo occurrence characteristics and the altitude of observations (from 90 to 140km ranges), namely, the lower E-region daytime (90-110km), the lower E-region nighttime (90-105km) and the upper E-region nighttime (105-140km) echoes. The results are compared with that of Piura, a low-latitude station located at about the same geomagnetic latitude, but to the south of the equator. By comparing the behaviors of the lower E-region radar echoes of the summer months between Gadanki and Piura, we find that the lower altitude echoes below about 100km are rarely reported in Piura but commonly seen in Gadanki. Features of the nighttime echoes observed by these two radars are quite similar but daytime FAI echoes are again seldom detected by Piura.


2000 ◽  
Vol 18 (1) ◽  
pp. 99-110 ◽  
Author(s):  
J. A. Wild ◽  
T. K. Yeoman ◽  
P. Eglitis ◽  
H. J. Opgenoorth

Abstract. High time resolution data from the CUTLASS Finland radar during the interval 01:30-03:30 UT on 11 May, 1998, are employed to characterise the ionospheric electric field due to a series of omega bands extending ~5° in latitude at a resolution of 45 km in the meridional direction and 50 km in the azimuthal direction. E-region observations from the STARE Norway VHF radar operating at a resolution of 15 km over a comparable region are also incorporated. These data are combined with ground magnetometer observations from several stations. This allows the study of the ionospheric equivalent current signatures and height integrated ionospheric conductances associated with omega bands as they propagate through the field-of-view of the CUTLASS and STARE radars. The high-time resolution and multi-point nature of the observations leads to a refinement of the previous models of omega band structure. The omega bands observed during this interval have scale sizes ~500 km and an eastward propagation velocity ~0.75 km s-1. They occur in the morning sector (~05 MLT), simultaneously with the onset/intensification of a substorm to the west during the recovery phase of a previous substorm in the Scandinavian sector. A possible mechanism for omega band formation and their relationship to the substorm phase is discussed..Key words. Ionosphere (auroral ionosphere; electric fields and currents) · Magnetospheric physics (magnetosphere-ionosphere interactions)


2010 ◽  
Vol 10 (6) ◽  
pp. 1197-1208 ◽  
Author(s):  
P. Nenovski ◽  
Ch. Spassov ◽  
M. Pezzopane ◽  
U. Villante ◽  
M. Vellante ◽  
...  

Abstract. Ionograms from Rome (41.8N, 12.5E) and Sofia (42.4N, 23.2E) ionospheric stations during earthquake (EQ) activity with magnitude (M) between 5 and 6 in Central Italy are analyzed. It is found that several ionospheric disturbances occur in the intermediate E-F region before the EQ shock. In fact, besides sporadic E (Es) layer development (of type h) of short duration (transients), fmin increase, trace gaps near the critical frequencies, and E region trace disappearance are also observed within one to three hours before the EQ shock. Before the EQ shocks we find that the F2 region parameters are practically undisturbed. The only exception is the so-called fork trace that appears mostly near the critical frequency of the F2 region. Acoustic gravity waves (AGW) are suggested as one of the possible sources of transients observed in the ionosphere before the EQ shock.


Sign in / Sign up

Export Citation Format

Share Document