X-RAY PHOTOELECTRON SPECTROSCOPY OF SILOXENE: A MODEL COMPOUND REPRESENTING INTERMEDIATE OXIDATION STATES OF SILICON AND INTERFACE DEFECT SITES

Author(s):  
J.A. Wurzbach
2018 ◽  
Vol 196 ◽  
pp. 04005
Author(s):  
Irina Stepina ◽  
Irina Kotlyarova

The difficulty of wood protection from biocorrosion and fire is due to the fact that modifiers in use are washed out from the surface of the substrate under the influence of environmental factors. This results in a rapid loss of the protective effect and other practically important wood characteristics caused by the modification. To solve this problem is the aim of our work. Here, monoethanolaminoborate is used as a modifier, where electron-donating nitrogen atom provides a coordination number equal to four to a boron atom, which determines the hydrolytic stability of the compounds formed. Alpha-cellulose ground mechanically to a particle size of 1 mm at most was used as a model compound for the modification. X-ray photoelectron spectra were recorded on the XSAM-800 spectrometer (Kratos, UK). Prolonged extraction of the modified samples preceded the registration of the photoelectron spectra to exclude the fixation of the modifier molecules unreacted with cellulose. As a result of the experiment, boron and nitrogen atoms were found in the modified substrate, which indicated the hydrolytic stability of the bonds formed between the modifier molecules and the substrate. Therefore monoethanolaminoborate can be considered as a non-extractable modifier for wood-cellulose materials.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 558
Author(s):  
Wenhui Zhu ◽  
Caiyun Zhang ◽  
Yali Chen ◽  
Qiliang Deng

Photothermal materials are attracting more and more attention. In this research, we synthesized a ferrocene-containing polymer with magnetism and photothermal properties. The resulting polymer was characterized by Fourier-transform infrared (FT-IR), vibrating sample magnetometer (VSM), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Its photo-thermocatalytic activity was investigated by choosing methylene blue (MB) as a model compound. The degradation percent of MB under an irradiated 808 nm laser reaches 99.5% within 15 min, and the degradation rate is 0.5517 min−1, which is 145 times more than that of room temperature degradation. Under irradiation with simulated sunlight, the degradation rate is 0.0092 min−1, which is approximately 2.5 times more than that of room temperature degradation. The present study may open up a feasible route to degrade organic pollutants.


2019 ◽  
Vol 5 (4) ◽  
pp. 61 ◽  
Author(s):  
Raja ◽  
Esquenazi ◽  
Jones ◽  
Li ◽  
Brinson ◽  
...  

In this work, as-received HiPCO single walled carbon nanotubes (SWCNTs) are incorporated in a controllable manner at various concentrations into Cu-SWCNT composites via electroless plating, by varying the related reaction times, with polyethylene glycol (PEG) used as a dispersing agent. The resultant samples were analyzed using scanning electron microscopy (SEM) for morphology assessment, energy dispersive X-ray analysis (EDX) and X-ray photoelectron spectroscopy (XPS) for elemental analysis, X-ray diffraction (XRD) for the assessment of crystal phase identification, and Raman spectroscopy for the confirmation of the presence of the incorporated SWCNTs. The Cu-SWCNT composites were found to contain carbon, catalytic iron (associated with the raw, as-received SWCNTs), oxygen, and copper; the latter was found to be inversely proportional to carbon and iron contents. The oxygen (associated with both the SWCNT defect sites and oxidized copper surfaces) remained more or less constant regardless of the proportion of SWCNTs in the composites. The Raman IG:ID ratio remains within the experimental error constant, indicating that the electroless deposition does not have a deleterious effect on the SWCNTs. At short deposition times, SEM revealed a relatively dense structure comprising a distinctive fibrous morphology, suggestive of an underlying SWCNT substrate coated with copper; however, with increasing deposition, a more porous morphology is observed. The size of the granular particles increases up until 10 min of reaction, after which time it remains unchanged.


Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1909
Author(s):  
Ju Hyun Yang ◽  
So Jeong Park ◽  
Choong Kyun Rhee ◽  
Youngku Sohn

Energy recycling and production using abundant atmospheric CO2 and H2O have increasingly attracted attention for solving energy and environmental problems. Herein, Pt-loaded Ti sheets were prepared by sputter-deposition and Pt4+-reduction methods, and their catalytic activities on both photocatalytic CO2 reduction and electrochemical hydrogen evolution were fully demonstrated. The surface chemical states were completely examined by X-ray photoelectron spectroscopy before and after CO2 reduction. Gas chromatography confirmed that CO, CH4, and CH3OH were commonly produced as CO2 reduction products with total yields up to 87.3, 26.9, and 88.0 μmol/mol, respectively for 700 °C-annealed Ti under UVC irradiation for 13 h. Pt-loading commonly negated the CO2 reduction yields, but CH4 selectivity was increased. Electrochemical hydrogen evolution reaction (HER) activity showed the highest activity for sputter-deposited Pt on 400 °C-annealed Ti with a HER current density of 10.5 mA/cm2 at −0.5 V (vs. Ag/AgCl). The activities of CO2 reduction and HER were found to be significantly dependent on both the nature of Ti support and the oxidation states (0,II,IV) of overlayer Pt. The present result could provide valuable information for designing efficient Pt/Ti-based CO2 recycle photocatalysts and electrochemical hydrogen production catalysts.


1979 ◽  
Vol 33 (4) ◽  
pp. 380-384 ◽  
Author(s):  
J. A. Schreifels ◽  
A. Rodero ◽  
W. E. Swartz

A series of copper chromite catalysts have been studied by x-ray photoelectron spectroscopy. The data indicate that in the as-received form the copper is present as a mixture of Cu(OH)2 and CuO. After calcination at 500 °C only CuO is present. The chromium is present as Cr+3 and Cr+4 when no promoter is added. When a BaO promoter is added, the Cr+6 is stabilized. Calcination at 500°C for varying periods of time alter the relative amounts of Cr+3 and Cr+6 on the catalytic surface. In addition, the relative amounts of the various oxidation states are a function of calcination temperature. At a calcination temperature of 240°C a Cr+5 surface species is reproducibly observed in one of the catalysts.


2014 ◽  
Vol 29 (2) ◽  
pp. 232-239 ◽  
Author(s):  
Xiaotang Du ◽  
Jeffery S. Hsieh

Abstract A silicon wafer coated with cellulose was prepared to measure the deposition of stickies on fibers and polyvinyl acetate (PVAc) suspension is prepared as the model compound. In addition, two methods, shear force and aeration, were used to induce the agglomeration and deposition of microstickies. The model surface was characterized by X-ray photoelectron spectroscopy (XPS) and water contact angle. The results from new methods were also compared with old methods of High-density polyethylene (HDPE) deposition and INGEDE (International Association of the Deinking Industry) Method 4. Although these methods have been used to predict the deposition of stickies onto the drying felt or other equipment, the deposition of stickies onto fibers can differ significantly due to the hydrophilic nature of the fibers. This is the first measurement method that could help to predict the deposition of stickies onto paper products, which has been shown to cause detrimental effects.


2017 ◽  
Vol 19 (21) ◽  
pp. 14020-14029 ◽  
Author(s):  
Norberto Salazar ◽  
Igor Beinik ◽  
Jeppe V. Lauritsen

The sulfidation pathway from MoO3to MoS2on Au(111) revealed by a combination of Scanning Tunneling Microscopy and X-Ray Photoelectron Spectroscopy.


1993 ◽  
Vol 8 (10) ◽  
pp. 2679-2685 ◽  
Author(s):  
P. Moretti ◽  
B. Canut ◽  
S.M.M. Ramos ◽  
R. Brenier ◽  
P. Thévenard ◽  
...  

LiNbO3 single crystals were implanted at room temperature with Eu+ ions at 70 keV with fluence ranging from 0.5 to 5 × 1016 ions · cm−2. The damage in the implanted layer has been investigated by Channeling Rutherford Backscattering (RBS-C), and the oxidation states of the cations have been determined by x-ray photoelectron spectroscopy (XPS). Following implantation, a fully amorphized layer of 60 nm is generated, even for the lowest fluence employed. Subsequent annealing in air, in the range 800–1250 K, was applied to restore tentatively the crystallinity and promote the substitutional incorporation of Eu in the crystal. Only a partial recrystallization of the damaged layer was observed. For as-implanted samples, XPS spectra clearly reveal europium in Eu2+ and Eu3+ states, and the Nb5+ ions are driven to lower charge states.


Sign in / Sign up

Export Citation Format

Share Document