TENSILE BEHAVIOR OF Al-Mg ALLOY SHEET AT WIDE RANGE OF STRAIN RATE AT VARIOUS TEMPERATURES

Author(s):  
T. NAKA ◽  
F. YOSHIDA
2018 ◽  
Vol 183 ◽  
pp. 02028
Author(s):  
Tsuyoshi Kami ◽  
Hiroyuki Yamada ◽  
Nagahisa Ogasawara

The effect of strain rate on mechanical properties of Al-2.3wt.%Mg alloy (AA5021) and commercial pure aluminum (purity 99.7wt.%: A1070) was investigated at room temperature. The tensile tests were conducted at strain rates from 1.0×10−4 to 1.0×103 s−1. The universal testing machine was used for strain rate 1.0×10-4 to 1.0×10−1 s−1. For the strain rate 1.0×100 s-1, the servohydraulic testing machine, which was developed by our laboratory, was used. The impact strain rate 1.0×103 s−1 was obtained using the split Hopkinson pressure bar method. The pure aluminum showed positive strain rate dependence of material strength at the investigated strain rates. In contrast, the Al-2.3wt.%Mg alloy showed the negative strain rate dependence at strain rates from 1.0×10−4 to 1.0×100 s−1. However, Al-2.3wt.%Mg alloy showed the positive strain rate dependence at strain rates from 1.0×100 to 1.0×103 s−1. It was surmised that the effect of dislocation locking by the solute Mg atoms became negligible at strain rate of approximately 1.0×100 s−1. It was confirmed that material properties for the Al-Mg alloy at the strain rate of 1.0×100 s−1 were important, since the strain rate dependence changed negative to positive around this strain rate.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Zakaria El-Qoubaa ◽  
Ramzi Othman

Polyetheretherketone (PEEK) is used in several engineering applications where it has to bear impact loads. Nevertheless, the tensile behavior has only been studied in the quasi-static range of loading rates. To address the lack of data in the impact strain rate range, the tensile mechanical behavior of PEEK is investigated at room temperature over a large range of strain rates (from 0.001 to 1000/s). The macroscopic volume change is studied under uniaxial tension using digital image correlation (DIC) method, showing a significant dilatation that reaches 16% at a logarithmic axial strain of 40%. The true stress-strain behavior is therefore established based on the measured volume change. Elsewhere, the yield stress shows a significant sensitivity to strain rate. Besides, a new constitutive equation is proposed to take into account the increase in strain rate sensitivity at high strain rates. It assumes an apparent activation volume which decreases as the strain rate increases. The new constitutive equation gives similar results when compared to the Ree-Eyring equation. However, only three material constants are to be identified and are physically interpreted.


2014 ◽  
Vol 23 (8) ◽  
pp. 3007-3017 ◽  
Author(s):  
M. Scapin ◽  
L. Peroni ◽  
C. Fichera ◽  
A. Cambriani

2014 ◽  
Vol 1063 ◽  
pp. 215-218 ◽  
Author(s):  
Guang Sheng Huang ◽  
Li Fei Wang ◽  
Fu Sheng Pan ◽  
Ming Tu Ma

Mg alloy is a potential material to be used in automobile, especially in the stamping products. Through texture weakening, temperature increasing, strain rate decreasing, blank holder force controlling, lubrication choosing and so on, the formability of AZ31 magnesium alloy is improved so that the cold stamping on some simple products can be conducted. However, on the complicated products, hot stamping should be considered. Temperature has an important effect on the formability of Mg alloy sheet. As the temperature increasing, the strength of Mg alloys sheet decreases while the formability increases. Hot stamping process is an effective way to broaden the using of Mg alloys.


2016 ◽  
Vol 867 ◽  
pp. 3-7
Author(s):  
Chun Sheng Ma ◽  
Hai Long Fu ◽  
Hao Li ◽  
Xiao Luo ◽  
Yang Li ◽  
...  

This Magnesium (Mg) alloys have been increasingly used in the automotive industry due to their superior mechanical properties compared with other metals. While there are some obstacles in the application of Mg alloy, one of that is its complex dynamic response characteristic. Many papers have studied the tensile and compression properties of AZ31B Mg alloys sheet, but lack of shear test. This paper presents experimental study, including the test method and test data analysis, on the AZ31B Mg alloy sheet. Uniaxial tension tests were carried out over a wide range of strain rates from to , which are of interest in vehicle crash CAE. At the same time uniaxial compression and shear tests at strain rates from to were also carried out. The different mechanical behavior of AZ31B Mg alloys sheet between tensile, compression and shear stress states can also be studied in this paper.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 838 ◽  
Author(s):  
Zhenglong Liang ◽  
Qi Zhang

The flow behavior of the Al–Si–Mg alloy under uniaxial compression loading was investigated at different strain rates (10−3 s−1, 10−2 s−1,10−1 s−1, 100 s−1) at a wide range of temperatures (573 K, 623 K, 673 K, 723 K, 773 K). The results showed that the peak stress increase with the strain rate and decrease with the increase of temperature. According to the measured flow stress curves, a modified Johnson-Cook (J-C) constitutive model taking strain rate effect on thermo softening into account was proposed to delineate the flow behavior. The comparisons between the measured flow curves and the predicted ones showed them to be very close and the average error is 1.65%. The added experiments were also conducted for validating the modified model, and the predicted data well agreed with the measured flow stress curves. That indicated the modified Johnson-Cook model is reliable and can accurately delineate the flow behavior of Al–Si–Mg alloy.


2010 ◽  
Vol 25 (3) ◽  
pp. 270-273 ◽  
Author(s):  
A. Sarkar ◽  
P. Mukherjee ◽  
P. Barat

Al–2.5% Mg alloy exhibits the Portevin–Le Chatelier (PLC) effect at room temperature for a wide range of strain rates. Tensile test has been carried out on a flat Al–2.5% Mg alloy sample at a strain rate of 3.7×10−6 s−1. The strain rate was chosen so that the type C PLC band appears in the sample. X-ray diffraction profile has been recorded from the gauge length portion of the deformed sample to investigate the microstructure of the PLC band. Analysis revealed that the dislocation density is much higher within the band compared to the undeformed sample even at small strain. The PLC band in this alloy possesses an equal fraction of screw and edge dislocations.


Sign in / Sign up

Export Citation Format

Share Document