Cracking of Toxic Waste

Author(s):  
R. Prakash ◽  
R. Siddharth ◽  
N. Gunasekar
Keyword(s):  
2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Salma Savira Siddik ◽  
Eka Wardhani

<p>Hospital X was class b private hospitals that are located in Batam with 297 unit beds. The waste that can be categorized as solid waste medical in the hospital which is infectious, pharmacy, hazardous and toxic waste, cytotoxic, sharp object.  The purpose of this research is to identify, a source of , the characteristics, solid waste medical produced by hospital X in Batam and also conduct an evaluation of solid waste medical management hospital in accordance with the minister of environment and forestry 56 2015 on procedures and technical requirements of hazardous and toxic waste management than health service facilities. This research used primary and secondary data collection method. The research results show solid waste medical management at the hospital X in Batam most of them are in according to rule. But there are some things that must be improved are blinding trash bag, efficiency and minimal temparature the combustion chamber incinerator. Management efforts must to do are briefing to officer of the waste collection about the way to blinding trash bag in according to the regulation and the incinerator that can serve confirming to standard of burning hazardous and toxic waste. <strong></strong></p>


1999 ◽  
Vol 40 (4-5) ◽  
pp. 123-130 ◽  
Author(s):  
S. Malato ◽  
J. Blanco ◽  
C. Richter ◽  
B. Milow ◽  
M. I. Maldonado

Particulate suspensions of TiO2 irradiated with natural solar tight in a large experimental plant catalyse the oxidation of organic contaminants. The problem in using TiO2 as a photocatalyst is electron/hole recombination. One strategy for inhibiting e−/h+ recombination is to add other (irreversible) electron acceptors to the reaction. In many highly toxic waste waters where degradation of organic pollutants is the major concern, the addition of an inorganic anion to enhance the organic degradation rate may be justified. For better results, these additives should fulfil the following criteria: dissociate into harmless by-products and lead to the formation of ·OH or other oxidising agents. In this paper, we attempt to demonstrate the optimum conditions for the treatment of commercial pesticide rinsates found in the wastewater produced by a pesticide container recycling plant. The experiments were performed in one of the pilot plants of the largest solar photocatalytic system in Europe, the Detoxification Plants of the Plataforma Solar de Almería (PSA), in Spain. After testing ten different commercial pesticides, results show that peroxydisulphate enhances the photocatalytic miniralization of all of them. This study is part of an extensive project focused on the design of a solar photocatalytic plant for decontamination of agricultural rinsates in Almería (Spain).


2019 ◽  
Vol 43 (1) ◽  
Author(s):  
Esmat Ahmed Abou El-Anwar

Abstract Background Aswan and Luxor Governorates are characterized by multifaceted activities such as cement, chemicals, fertilizers, detergents, nitrogen fertilizer factory at Aswan, the sugar and diary factory at Kom Ombo, and several other factories such as the sugar, pulp, paper, ferrosilicon, and phosphate factories at Edfu, urbanization and agriculture. In addition, there is a main sewage station which is used for irrigation of many crops. Assessing the pollution of soil and sediment with some heavy metals in these areas is the main aim of the current work. Results The average heavy metals content in the studied cultivated soils and Nile sediments are above the acceptable levels. Generally, Nile sediments and cultivated soils at Aswan and Luxor were unpolluted to moderately polluted with heavy metals. Pollution indices indicated that the studied Nile sediments were at considerably ecological risk from Cd (Er = 138.89) and Zn (Er = 140.52). In contrast, the cultivated soil was at very high ecological risk from Cd (Er = 295.24). Conclusions The current research revealed that the soil and sediments in the Upper Egypt are less polluted than Lower Egypt. Thus, the concentrations of toxic elements are increased from south to north direction in Egypt along the Nile River. The sources of the toxic metals may possibly be natural or anthropogenic in the studied area. The anthropogenic source is resulting from paper, pulp, ferrosilicon factories, and phosphate mining at Edfu. In addition, there are some polluting industries such as sand quarry, shale mining, and the nitrogen fertilizer factory at Aswan. On the other hand, the natural sources of toxic waste are the drains during the seasonal flash floods.


2018 ◽  
Vol 284 ◽  
pp. 950-955
Author(s):  
V.G. Merzlikin ◽  
G.I. Bolkina ◽  
L.N. Ignatova

The work is devoted to effective and ecological technologies for the application of functional structured materials for roads, railways, airfields on permafrost with forced cooling of the sub-soil foundation. The physical and mathematical simulation of the thermal state of frozen ground with single and double-layer coatings was performed. The temperature profiles of a model combine roadbed on the longstanding permafrost have been calculated at winter conditions of the Northern Hemisphere. This roadbed include an upper surface coating with low thermal conductivity and high emissivity in the long-wavelength IR range at convective-radiative heat exchange. The second high-conductive subsurface coating is laid on the underlying sub-soil and ensures its cooling as the “heat pump”. The efficiency of the proposed technology of roadbed construction based on the use of non-toxic waste of numerous industrial productions. The carried out research will be in demand for the specialists of transport support, engineering glaciology, in the field of climatology, oceanology, construction, environmental measures, and also in the presentation of financial and economic forecasts of the prospects for the development of polar and subpolar regions, the Arctic and the Antarctic, and high-mountain.


2012 ◽  
Vol 65 (8) ◽  
pp. 1435-1440 ◽  
Author(s):  
Thiago L. Marques ◽  
Vanessa N. Alves ◽  
Luciana M. Coelho ◽  
Nívia M. M. Coelho

Metal contaminants are generally removed from effluents by chemical and physical processes which are often associated with disadvantages such as the use of toxic reagents, generation of toxic waste and high costs. Hence, new techniques have been developed, among them the study of natural adsorbents, for instance, the use of Moringa oleifera seeds. The potential of M. oleifera seeds for nickel removal in aqueous systems was investigated. The seeds utilized were obtained from plants grown in Uberlândia/Brazil. After being dried and pulverized, the seeds were treated with 0.1 mol/L NaOH. Fourier transform infrared spectroscopy, scanning electron microscopy and thermogravimetric analyses were used for the characterization of the material. Using the optimized methodology (50 mL of 4.0 mg/L Ni(II), pH range of 4.0–6.0, agitation time of 5 min and adsorption mass of 2.0 g) more than 90% of Ni(II) could be removed from water samples. The sorption data were fitted satisfactorily by the Langmuir adsorption model. Evaluation applying the Langmuir equation gave the monolayer sorption capacity as 29.6 mg/g. The results indicate that this material could be employed in the extraction of nickel, considering its ease of use, low cost and environmental viability, which make it highly attractive for application in developing countries.


Sign in / Sign up

Export Citation Format

Share Document