Fire hazard assessment of wall and ceiling fire spread in rooms

2022 ◽  
pp. 127-156
Author(s):  
Colleen Wade ◽  
Greg Baker
1997 ◽  
Vol 15 (1) ◽  
pp. 14-28 ◽  
Author(s):  
W.K. Chow

The multi-cell concept is further applied for assessing the fire hazard of a big hall using a zone model. A hall of size 60 m by 60 m by 5 m was selected for the study. HAZARD1, a computer-based hazard calculation method combining models of fire growth and egress was used for fire hazard assess ment. This hall was divided into a "nine-room" structure, a "three-room" struc ture, and a "one-room" structure. Room numbers and node numbers for each group were labelled for use by the evacuation module EXITT. The fire environ ment was simulated by the fire zone model CFAST. With the predicted results, the escape paths of the occupants were then simulated. The module TENAB was used to study whether tenability criteria were exceeded. Because the "multi-cell" concept of using a zone model can give detailed information in the fire environment, better identification of the escape path and more accurate prediction on tenability are possible.


Minerals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 907
Author(s):  
Marek Więckowski ◽  
Natalia Howaniec ◽  
Adam Smoliński

Fire hazard assessment in coal mines is performed on the basis of concentrations of particular gases emitted from the heating coal deposit, but more precise criteria and indicators are needed to assess fire hazard properly—both during the temperature rise phase and in the coal bed cooling phase. In the paper the impact of coal grinding on hazard assessment of spontaneous fire development in the coal deposit during heating and cooling the fire source was analyzed. The intensity of desorption of ethane, ethylene, propane, propylene, acetylene, carbon monoxide and hydrogen is the resultant of temperature and grinding of coal samples. The results proved that the ratio of concentrations emitted by standard versus coarsely crushed coal for each of the gases, changed both in the growth phase as well as in the temperature drop phase. It was found that as the temperature rose, the effect of coal grinding on the release of ethane, ethylene, propane, propylene and carbon monoxide decreased. The greatest effect of coal grinding was observed in the case of ethane and propane, while the lowest in the case of hydrogen and carbon monoxide.


1993 ◽  
Vol 11 (4) ◽  
pp. 287-295 ◽  
Author(s):  
M.A. Delichatsios

We present and demonstrate the application of a systematic methodology for predicting fire spread and growth and for a relative fire hazard classification of materials for any scale and fire environment. This methodol ogy consists of three steps: (1) select laboratory test methods to perform flam mability measurements; (2) based on these measurements, obtain key flamma bility material properties which are precisely defined in this work; and (3) use these properties in a mathematical model of fire spread and growth to predict fire hazards. The complementary test methods we have selected and used are: (a) a general flammability test apparatus (such as NIST or FMRC) [1,2] modified to also provide pyrolysis measurements in an inert N2 atmosphere; (b) the Limited Oxygen Index (LOI) apparatus, which is used here as a tool for ob taining properties needed for creeping flame spread and extinction, including vitiated environments; and (c) a solid material smoke-point height apparatus [8], which is used to characterize the smokiness of the burning material needed to determine the radiation and smoke yield for arbitrary fire situations (wall fires, pool fires or ceiling fires) [8]. The use and proper interpretation of the Limited Oxygen Index apparatus can replace the LIFT [10] apparatus for deter mining in a more accurate and direct way the material properties required for creeping (vertical downward, lateral, horizontal) flame spread. The present methodology has been compared well with experiments in this work and else where [9], and it has been used to predict critical conditions for fire spread [11], not empirically as it is usually done, but based on first principles of fire spread, fire growth and burning, together with material flammability properties syste matically deduced from small-scale test measurements.


2011 ◽  
Vol 368-373 ◽  
pp. 1171-1174
Author(s):  
Zhen Wang ◽  
Shu Ping Zhang

This paper analyzes the fire hazard of logistics centers, puts forward to prevent the spread of fire has important significance on study the horizontal spread of fire performance under different fire scene of a project example by using the methods of calculation and numerical simulation. Provide a reference on the spray system and shelf location settings for such construction.


Sign in / Sign up

Export Citation Format

Share Document