Tricarboxylic Acid Cycle Intermediates and the Control of Fatty Acid Synthesis and Ketogenesis

Author(s):  
M. DANIEL LANE ◽  
ROBERT A. MOONEY
mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Kensuke Shima ◽  
Inga Kaufhold ◽  
Thomas Eder ◽  
Nadja Käding ◽  
Nis Schmidt ◽  
...  

ABSTRACT Infection with the obligate intracellular bacterium Chlamydia trachomatis is the most common bacterial sexually transmitted disease worldwide. Since no vaccine is available to date, antimicrobial therapy is the only alternative in C. trachomatis infection. However, changes in chlamydial replicative activity and the occurrence of chlamydial persistence caused by diverse stimuli have been proven to impair treatment effectiveness. Here, we report the mechanism for C. trachomatis regulating host signaling processes and mitochondrial function, which can be used for chlamydial metabolic reprogramming during treatment with β-lactam antimicrobials. Activation of signal transducer and activator of transcription 3 (STAT3) is a well-known host response in various bacterial and viral infections. In C. trachomatis infection, inactivation of STAT3 by host protein tyrosine phosphatases increased mitochondrial respiration in both the absence and presence of β-lactam antimicrobials. However, during treatment with β-lactam antimicrobials, C. trachomatis increased the production of citrate as well as the activity of host ATP-citrate lyase involved in fatty acid synthesis. Concomitantly, chlamydial metabolism switched from the tricarboxylic acid cycle to fatty acid synthesis. This metabolic switch was a unique response in treatment with β-lactam antimicrobials and was not observed in gamma interferon (IFN-γ)-induced persistent infection. Inhibition of fatty acid synthesis was able to attenuate β-lactam-induced chlamydial persistence. Our findings highlight the importance of the mitochondrion-fatty acid interplay for the metabolic reprogramming of C. trachomatis during treatment with β-lactam antimicrobials. IMPORTANCE The mitochondrion generates most of the ATP in eukaryotic cells, and its activity is used for controlling the intracellular growth of Chlamydia trachomatis. Furthermore, mitochondrial activity is tightly connected to host fatty acid synthesis that is indispensable for chlamydial membrane biogenesis. Phospholipids, which are composed of fatty acids, are the central components of the bacterial membrane and play a crucial role in the protection against antimicrobials. Chlamydial persistence that is induced by various stimuli is clinically relevant. While one of the well-recognized inducers, β-lactam antimicrobials, has been used to characterize chlamydial persistence, little is known about the role of mitochondria in persistent infection. Here, we demonstrate how C. trachomatis undergoes metabolic reprogramming to switch from the tricarboxylic acid cycle to fatty acid synthesis with promoted host mitochondrial activity in response to treatment with β-lactam antimicrobials.


1964 ◽  
Vol 42 (3) ◽  
pp. 345-352 ◽  
Author(s):  
E. Bilinski ◽  
R. E. E. Jonas

The fatty acid oxidizing system present in lateral line muscle of rainbow trout (Salmo gairdnerii) and sockeye salmon (Oncorhynchus nerka) was studied by using subcellular particles, having the sedimentation characteristics of mitochondria. The rate of oxidation of K-myristate-1-C14, K-octanoate-1-C14, and Na-hexanoate-1-C14 was determined at 25 °C by measuring the formation of C14O2. Oxidation was stimulated by adenosine triphosphate Mg++, coenzyme A and tricarboxylic acid cycle intermediates, but not by cytochrome c. It was optimum at pH 7.5–8.5.The data are consistent with the assumption that in the lateral line muscle fatty acid oxidation takes place through the known mechanism involving CoA derivatives.


2013 ◽  
Vol 129 (1) ◽  
pp. 107-119 ◽  
Author(s):  
Mussie G. Hadera ◽  
Olav B. Smeland ◽  
Tanya S. McDonald ◽  
Kah Ni Tan ◽  
Ursula Sonnewald ◽  
...  

1967 ◽  
Vol 105 (1) ◽  
pp. 333-341 ◽  
Author(s):  
Kirsti Lampiaho ◽  
E. Kulonen

1. The metabolism of incubated slices of sponge-induced granulation tissue, harvested 4–90 days after the implantation, was studied with special reference to the capacity of collagen synthesis and to the energy metabolism. Data are also given on the nucleic acid contents during the observation period. Three metabolic phases were evident. 2. The viability of the slices for the synthesis of collagen was studied in various conditions. Freezing and homogenization destroyed the capacity of the tissue to incorporate proline into collagen. 3. Consumption of oxygen reached the maximum at 30–40 days. There was evidence that the pentose phosphate cycle was important, especially during the phases of the proliferation and the involution. The formation of lactic acid was maximal at about 20 days. 4. The capacity to incorporate proline into collagen hydroxyproline in vitro was limited to a relatively short period at 10–30 days. 5. The synthesis of collagen was dependent on the supply of oxygen and glucose, which latter could be replaced in the incubation medium by other monosaccharides but not by the metabolites of glucose or tricarboxylic acid-cycle intermediates.


Sign in / Sign up

Export Citation Format

Share Document