The Toxicity Profile of Hydrolyzed Aqueous Olive Pulp Extract

Author(s):  
Robert M. Diener ◽  
Mildred S. Christian
Keyword(s):  
2004 ◽  
Vol 27 (4) ◽  
pp. 309-330 ◽  
Author(s):  
Mildred S. Christian ◽  
Valerie A. Sharper ◽  
Alan M. Hoberman ◽  
John E. Seng ◽  
LiJie Fu ◽  
...  
Keyword(s):  

2019 ◽  
Vol 19 (17) ◽  
pp. 1443-1458 ◽  
Author(s):  
Rohit Bhatia ◽  
Ravindra K. Rawal

: Breast cancer is the most common invasive cancer in women, and the second main cause of deaths in women, after lung cancer. There is continuous advancement in the development of therapeutic agents against breast cancer in recent years and it is still in progress. Development of hybrid molecules by combining different pharmacophores to obtain significant biological activity is an excellent approach. Coupling of coumarin scaffold with other distinct motifs has led to the design of newer compounds against breast cancer. These distinct pharmacophores possess a diverse mode of action as well as selectivity. It has been reported in the literature that coumarin hybrids possess significant potency against breast cancer by binding to various biological targets which are associated with breast cancer. Due to low toxicity profile on various organ systems, coumarin hybrids have nowadays attracted the keen attention of researchers to explore their therapeutic ability against breast cancer. Reported coumarin hybrids include coupling with isoxazole, thiazole, monastrol, chalcone, triazole, sulphonamide, triphenylethylene, benzimidazole, pyran, imidazole, stilbene, oestrogen, phenylsulphonylfuroxan, etc. In the present review, a description of various coumarin hybrid molecules has been presented along with their structural-activity relationships.


2015 ◽  
Vol 31 (3) ◽  
pp. 156-164 ◽  
Author(s):  
Takashi Kanamoto ◽  
Yoshiaki Kiuchi ◽  
Masaki Tanito ◽  
Shiro Mizoue ◽  
Tomoko Naito ◽  
...  

2021 ◽  
Vol 22 (11) ◽  
pp. 5899
Author(s):  
Ewa Wrona ◽  
Maciej Borowiec ◽  
Piotr Potemski

CAR-T (chimeric antigen receptor T) cells have emerged as a milestone in the treatment of patients with refractory B-cell neoplasms. However, despite having unprecedented efficacy against hematological malignancies, the treatment is far from flawless. Its greatest drawbacks arise from a challenging and expensive production process, strict patient eligibility criteria and serious toxicity profile. One possible solution, supported by robust research, is the replacement of T lymphocytes with NK cells for CAR expression. NK cells seem to be an attractive vehicle for CAR expression as they can be derived from multiple sources and safely infused regardless of donor–patient matching, which greatly reduces the cost of the treatment. CAR-NK cells are known to be effective against hematological malignancies, and a growing number of preclinical findings indicate that they have activity against non-hematological neoplasms. Here, we present a thorough overview of the current state of knowledge regarding the use of CAR-NK cells in treating various solid tumors.


Sign in / Sign up

Export Citation Format

Share Document