8.6 Light Capture in Photosynthesis

2012 ◽  
pp. 94-114 ◽  
Author(s):  
H.A. Frank ◽  
R.J. Cogdell
Keyword(s):  
Author(s):  
Liang Zhao ◽  
Ding Chen ◽  
Shang Xu ◽  
Zhi Fang ◽  
Lin Wang ◽  
...  

Fast surface charge recombination and poor light capture capability are regarded as the two critical factors that hamper the photoelectrochemical (PEC) performance of photoanodes. In the present work, we employed...


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1455
Author(s):  
George Karabourniotis ◽  
Georgios Liakopoulos ◽  
Panagiota Bresta ◽  
Dimosthenis Nikolopoulos

Leaves have evolved to effectively harvest light, and, in parallel, to balance photosynthetic CO2 assimilation with water losses. At times, leaves must operate under light limiting conditions while at other instances (temporally distant or even within seconds), the same leaves must modulate light capture to avoid photoinhibition and achieve a uniform internal light gradient. The light-harvesting capacity and the photosynthetic performance of a given leaf are both determined by the organization and the properties of its structural elements, with some of these having evolved as adaptations to stressful environments. In this respect, the present review focuses on the optical roles of particular leaf structural elements (the light capture module) while integrating their involvement in other important functional modules. Superficial leaf tissues (epidermis including cuticle) and structures (epidermal appendages such as trichomes) play a crucial role against light interception. The epidermis, together with the cuticle, behaves as a reflector, as a selective UV filter and, in some cases, each epidermal cell acts as a lens focusing light to the interior. Non glandular trichomes reflect a considerable part of the solar radiation and absorb mainly in the UV spectral band. Mesophyll photosynthetic tissues and biominerals are involved in the efficient propagation of light within the mesophyll. Bundle sheath extensions and sclereids transfer light to internal layers of the mesophyll, particularly important in thick and compact leaves or in leaves with a flutter habit. All of the aforementioned structural elements have been typically optimized during evolution for multiple functions, thus offering adaptive advantages in challenging environments. Hence, each particular leaf design incorporates suitable optical traits advantageously and cost-effectively with the other fundamental functions of the leaf.


Author(s):  
Yan Sun ◽  
Lei Liu ◽  
Zhisheng Lv ◽  
Xingyue Zhangyang ◽  
Feifei Lu ◽  
...  

In the design of photocathode, the internal electric field could be formed due to the graded Al compositional [Formula: see text] nanostructure, which can improve the top surface emission probability of carriers. In this paper, [Formula: see text] nanostructure array photocathode composed of two sub-layers is presented. Based on the finite element method, the influence of graded geometrical parameters on their optoelectronic characteristics is investigated. The results show that when the thickness of the sublayer is equal, the difference of the Al composition between the two sublayers of nanostructure is larger, the sub-layers are less, and the quantum efficiency is higher. The light capture ability of the photocathode can be enhanced by increasing the thickness and the array spacing of the first sublayer. Compared with the hexagonal cross-section structure, the light trapping effect and spectral response of the circular cross-section structure are better.


2008 ◽  
Vol 35 (10) ◽  
pp. 1059 ◽  
Author(s):  
Jean-Christophe Chambelland ◽  
Mathieu Dassot ◽  
Boris Adam ◽  
Nicolas Donès ◽  
Philippe Balandier ◽  
...  

We developed a double-digitising method combining a hand-held electromagnetic digitizer and a non-contact 3D laser scanner. The former was used to record the positions of all leaves in a tree and the orientation angles of their lamina. The latter served to obtain the morphology of the leaves sampled in the tree. As the scanner outputs a cloud of points, software was developed to reconstruct non-planar (NP) leaves composed of triangles, and to compute numerical shape parameters: midrib curvature, torsion and transversal curvature of the lamina. The combination of both methods allowed construction of 3D virtual trees with NP leaves. The method was applied to young beech trees (Fagus sylvatica L.) from different sunlight environments (from 1 to 100% incident light) in a forest in central France. Leaf morphology responded to light availability, with a more bent shape in well-lit leaves. Light interception at the leaf scale by NP leaves decreased from 4 to 10% for shaded and sunlit leaves compared with planar leaves. At the tree scale, light interception by trees made of NP leaves decreased by 1 to 3% for 100% to 1% light, respectively.


Author(s):  
R Sierra-de-Grado ◽  
V Pando ◽  
J Voltas ◽  
R Zas ◽  
J Majada ◽  
...  

Abstract Although the straightening capacity of the stem is key for light capture and mechanical stability in forest trees, little is known about its adaptive implications. Assuming that stem straightening is costly, trade-offs are expected with competing processes such as growth, maintenance and defences. We established a manipulative experiment in a common garden of Pinus pinaster including provenances typically showing either straight-stemmed or crooked-stemmed phenotypes. We imposed a bending up to 35º on plants aged nine years of both provenance groups and followed the straightening kinetics and shoot elongation after releasing. Eight months later, we destructively assessed biomass partitioning, reaction wood, wood microdensity, xylem reserve carbohydrates and phloem secondary metabolites. The experimental bending and release caused significant, complex changes with a marked difference between straight- and crooked-type plants. The straight-type recovered verticality faster and to a higher degree and developed more compression wood, while displaying a transitory delay in shoot elongation, reducing resource allocation to defences and maintaining the levels of non-structural carbohydrates compared to the crooked type. This combination of responses indicates the existence of intraspecific divergence in the reaction to mechanical stresses which may be related to different adaptive phenotypic plasticity.


Sign in / Sign up

Export Citation Format

Share Document