Sympathetic Nervous System and a Nutrient Balance Model of Food Intake

Author(s):  
GEORGE A. BRAY
1999 ◽  
Vol 84 (2) ◽  
pp. 711-717 ◽  
Author(s):  
Mads Tang-Christensen ◽  
Peter J. Havel ◽  
Rebecca R. Jacobs ◽  
Philip J. Larsen ◽  
Judy L. Cameron

2005 ◽  
Vol 289 (5) ◽  
pp. R1467-R1476 ◽  
Author(s):  
C. Kay Song ◽  
Raven M. Jackson ◽  
Ruth B. S. Harris ◽  
Denis Richard ◽  
Timothy J. Bartness

Energy balance results from the coordination of multiple pathways affecting energy expenditure and food intake. Candidate neuropeptides involved in energy balance are the melanocortins. Several species, including Siberian hamsters studied here, decrease and increase food intake in response to stimulation and blockade of the melanocortin 4-receptor (MC4-R). In addition, central application of the MC3/4-R agonist melanotan-II decreases body fat (increases lipolysis) beyond that accounted for by its ability to decrease food intake. Because an increase in the sympathetic nervous system drive to white adipose tissue (WAT) is the principal initiator of lipolysis, we tested whether the sympathetic outflow circuitry from brain to WAT contained MC4-R mRNA expressing cells. This was accomplished by labeling the sympathetic outflow to inguinal WAT using the pseudorabies virus (PRV), a transneuronal retrograde viral tract tracer, and then processing the brain for colocalization of PRV immunoreactivity with MC4-R mRNA, the latter assessed by in situ hybridization. MC4-R mRNA was impressively colocalized in PRV-labeled cells (approximately greater than 60%) in many brain areas across the neuroaxis, including those typically implicated in lipid mobilization (e.g., hypothalamic paraventricular, suprachiasmatic, arcuate and dorsomedial nuclei, lateral hypothalamic area), as well as those not traditionally identified with lipolysis (e.g., preoptic area, subzona incerta of the lateral hypothalamus, periaqueductal gray, solitary nucleus). These data provide compelling neuroanatomical evidence that could underlie a direct central modulation of the sympathetic outflow to WAT by the melanocortins through the MC4-Rs resulting in changes in lipid mobilization and adiposity.


1996 ◽  
Vol 134 (4) ◽  
pp. 508-512
Author(s):  
Marisa Puerta ◽  
César Venero ◽  
Carmen Castro ◽  
María Abelenda

Puerta M, Venero C, Castro C, Abelenda M. Progesterone does not alter sympathetic activity in tissues involved in energy balance. Eur J Endocrinol 1996;134:508–12. ISSN 0804–4643 Female rats acclimated to thermoneutrality to avoid cold influences received progesterone by means of subcutaneous implants. They increased their food intake and body weight above the values recorded in control animals. None the less, despite the enhanced food intake, no sign of activation of the sympathetic nervous system was observed, as judged by the unaltered noradrenaline content, half-life and turnover rate in brown adipose tissue, pancreas and heart. This indicates that progesterone increases food intake but prevents non-energy-conservation processes regulated by the sympathetic nervous system from taking place. Thus, it facilitates in two different ways the building up of energy stores. Because overfeeding induced by palatable diets increases the sympathetic tone to the organs studied, it is suggested that the central mechanisms regulating energy balance are probably influenced in a different manner by progesterone than by the sensory properties of palatable diets. M Puerta, Departamento de Biología Animal II (Fisiología Animal), Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain


2003 ◽  
Vol 284 (4) ◽  
pp. E778-E787 ◽  
Author(s):  
Robert L. Dobbins ◽  
Lidia S. Szczepaniak ◽  
Weiguo Zhang ◽  
J. Denis McGarry

To assess the importance of the sympathetic nervous system in regulating body weight during prolonged leptin infusion, we evaluated food intake, body weight, and physical activity in conscious, unrestrained rats. Initial studies illustrated that prolonged intracerebroventricular (ICV) infusion of leptin enhanced substrate oxidation so that adipose tissue lipid stores were completely ablated, and muscle triglyceride and liver glycogen stores were depleted. After neonatal chemical sympathectomy, changes in weight and food intake were compared in groups of sympathectomized (SYM) and control (CON) adult animals during ICV infusion of leptin. CON animals lost 60 ± 9 g over 10 days vs. 25 ± 3 g in the SYM animals when food intake was matched between the two groups. Greater weight loss despite similar energy intake points to an important role of the sympathetic nervous system in stimulating energy expenditure during ICV leptin infusion by increasing the resting metabolic rate, since no differences in physical activity were observed between CON and SYM groups. In conclusion, activation of the SNS by leptin increases energy expenditure by augmenting the resting metabolic rate.


1981 ◽  
Vol 97 (1) ◽  
pp. 91-97 ◽  
Author(s):  
H. Storm ◽  
C. van Hardeveld ◽  
A. A. H. Kassenaar

Abstract. Basal plasma levels for adrenalin (A), noradrenalin (NA), l-triiodothyronine (T3), and l-thyroxine (T4) were determined in rats with a chronically inserted catheter. The experiments described in this report were started 3 days after the surgical procedure when T3 and T4 levels had returned to normal. Basal levels for the catecholamines were reached already 4 h after the operation. The T3/T4 ratio in plasma was significantly increased after 3, 7, and 14 days in rats kept at 4°C and the same holds for the iodide in the 24-h urine after 7 and 14 days at 4°C. The venous NA plasma concentration was increased 6- to 12-fold during the same period of exposure to cold, whereas the A concentration remained at the basal level. During infusion of NA at 23°C the T3/T4 ratio in plasma was significantly increased after 7 days compared to pair-fed controls, and the same holds for the iodide excretion in the 24-h urine. This paper presents further evidence for a role of the sympathetic nervous system on T4 metabolism in rats at resting conditions.


Sign in / Sign up

Export Citation Format

Share Document