Biosensors for the Detection of OP Nerve Agents

Author(s):  
Jun-ichi Anzai
Keyword(s):  
Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1270
Author(s):  
Stephanie Luedtke ◽  
Celine Bojo ◽  
Yunshen Li ◽  
Emilio Luna ◽  
Bianca Pomar ◽  
...  

Conformations of Cα backbones in X-ray structures of most organophosphate (OP)-inhibited human acetylcholinesterases (hAChEs) have been previously shown to be similar to that of the native hAChE. One of the exceptions is the structure of the diethylphosphoryl-hAChE conjugate, where stabilization of a large ethoxy group into the acyl pocket (AP) of hAChE-triggered notable loop distortions and consequential dissociation of the hAChE homodimer. Recently, six X-ray structures of hAChE conjugated with large OP nerve agents of the A-type, Novichoks, have been deposited to PDB. In this study we analyzed backbone conformation shifts in those structures, as well as in OP-hAChE conjugates formed by Paraoxon, Soman, Tabun, and VX. A Java-based pairwise alpha carbon comparison tool (PACCT 3) was used for analysis. Surprisingly, despite the snug fit of large substituents on phosphorus, inside Novichok-conjugated hAChEs only minor conformational changes were detected in their backbones. Small magnitudes of observed changes were due to a 1.2–2.4 Å shift of the entire conjugated OP away from the AP. It thus appears that the small AP of AChEs can accommodate, without distortion, substituents of the size of ethoxy or butyryl groups, provided that conjugated OP is “pulled” away from the AP. This observation has practical consequences in the structure-based design of nucleophilic reactivation antidotes as well as in the definition of the AChE specificity that relies on the size of its AP.


2020 ◽  
Vol 185 (3-4) ◽  
pp. e414-e421 ◽  
Author(s):  
Jennifer Therkorn ◽  
David G Drewry ◽  
Olivia Tiburzi ◽  
Mekbib Astatke ◽  
Charles Young ◽  
...  

Abstract Introduction Recent malicious use of chemical warfare agents (CWAs) is a reminder of their severity and ongoing threat. One of the main categories of CWAs is the organophosphate (OP) nerve agents. Presently, there is an urgent need to identify and evaluate OP nerve agent biomarkers that can facilitate identification of exposed individuals post-CWA incident. While exposures to OP nerve agents may be scenario-specific, the public is commonly exposed to OP compounds through the ubiquitous use of OP pesticides, which are chemically related to nerve agents. Therefore, a systematic literature review and methodological quality assessment were conducted for OP pesticide biomarker studies to serve as a baseline to assess if these approaches may be adapted to OP nerve agent exposures. Materials and Methods We conducted a systematic literature review to identify biomarkers of OP pesticide exposures. English language studies of any design that reported primary data on biomarkers for exposures in nonhuman primates or adult human study participants were eligible for inclusion. Using standard criteria for assessing the completeness of reported analytical methods, the quality of study methods was critically evaluated. Results A total of 1,044 studies of biomarkers of OP pesticide exposure were identified, of which 75 articles satisfied the inclusion and exclusion criteria. These studies described 143 different analyte/sample matrix combinations: 99 host-based biomarkers, 28 metabolites, 12 pesticides, and 4 adducts. The most commonly reported biomarkers were dialkyl phosphate urinary metabolites (22 studies), blood acetylcholinesterase, and plasma butyrylcholinesterase (26 studies each). None of the assessed quality review criteria were fully addressed by all identified studies, with almost all criteria scoring less than 50%. Conclusion Cholinesterase activity may have utility for identifying individuals with exposures surpassing a given threshold of OP nerve agent, but further investigation of how acetylcholinesterase and butyrylcholinesterase levels correlate with observed patient symptoms may be required to ensure accuracy of results. As CWAs and nerve agents are more readily used, more standardized reporting of biomarker measurements are needed to develop new approaches for OP nerve agent biomarkers.


2003 ◽  
Vol 18 (2-3) ◽  
pp. 255-260 ◽  
Author(s):  
Joseph Wang ◽  
Robin Krause ◽  
Kirstin Block ◽  
Mustafa Musameh ◽  
Ashok Mulchandani ◽  
...  

Archaea ◽  
2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Casey M. Theriot ◽  
Rebecca L. Semcer ◽  
Saumil S. Shah ◽  
Amy M. Grunden

Prolidases hydrolyze Xaa-Pro dipeptides and can also cleave the P-F and P-O bonds found in organophosphorus (OP) compounds, including the nerve agents soman and sarin.Ph1prol (PH0974) has previously been isolated and characterized fromPyrococcus horikoshiiand was shown to have higher catalytic activity over a broader pH range, higher affinity for metal, and increased thermostability compared toP. furiosusprolidase,Pfprol (PF1343). To obtain a better enzyme for OP nerve agent decontamination and to investigate the structural factors that may influence protein thermostability and thermoactivity, randomly mutatedPh1prol enzymes were prepared. FourPh1prol mutants (A195T/G306S-, Y301C/K342N-, E127G/E252D-, and E36V-Ph1prol) were isolated which had greater thermostability and improved activity over a broader range of temperatures against Xaa-Pro dipeptides and OP nerve agents compared to wild typePyrococcusprolidases.


Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 3029
Author(s):  
Franz Worek ◽  
Horst Thiermann ◽  
Marianne Koller ◽  
Timo Wille

The implementation of the Chemical Weapons Convention (CWC) in 1997 was a milestone in the prohibition of chemical warfare agents (CWA). Yet, the repeated use of CWA underlines the ongoing threat to the population. Organophosphorus (OP) nerve agents still represent the most toxic CWA subgroup. Defensive research on nerve agents is mainly focused on the “classical five”, namely tabun, sarin, soman, cyclosarin and VX, although Schedule 1 of the CWC covers an unforeseeable number of homologues. Likewise, an uncounted number of OP pesticides have been produced in previous decades. Our aim was to determine the in vitro inhibition kinetics of selected organophosphono- and organophosphorothioates with human AChE, as well as hydrolysis of the agents in human plasma and reactivation of inhibited AChE, in order to derive potential structure–activity relationships. The investigation of the interactions of selected OP compounds belonging to schedule 1 (V-agents) and schedule 2 (amiton) of the CWC with human AChE revealed distinct structural effects of the P-alkyl, P-O-alkyl and N,N-dialkyl residues on the inhibitory potency of the agents. Irrespective of structural modifications, all tested V-agents presented as highly potent AChE inhibitors. The high stability of the tested agents in human plasma will most likely result in long-lasting poisoning in vivo, having relevant consequences for the treatment regimen. In conclusion, the results of this study emphasize the need to investigate the biological effects of nerve agent analogues in order to assess the efficacy of available medical countermeasures.


The Analyst ◽  
2017 ◽  
Vol 142 (6) ◽  
pp. 918-924 ◽  
Author(s):  
Rupesh K. Mishra ◽  
A. M. Vinu Mohan ◽  
Fernando Soto ◽  
Robert Chrostowski ◽  
Joseph Wang

A microneedle array based biosensor for minimally invasive electrochemical monitoring of organophosphate (OP) nerve agents under the skin.


2005 ◽  
Vol 48 (1) ◽  
pp. 3-21 ◽  
Author(s):  
Jiří Bajgar

OP/nerve agents are still considered as important chemicals acting on living organisms and widely used in human practice. Nerve agents are the most lethal chemical warfare agents. They are characterized according to their action as compounds influencing cholinergic nerve transmission via inhibition of AChE. The symptoms of intoxication comprise nicotinic, muscarinic and central symptoms, for some OP/nerve agents, a delayed neurotoxicity is observed. Cholinesterases (AChE and BuChE) are characterized as the main enzymes involved in the toxic effect of these compounds including their molecular forms. The activity of both enzymes (and molecular forms) is influenced by inhibitors and other factors such as pathological states. There are different methods for cholinesterase determination, however, the most frequent is the method based on the hydrolysis of thiocholine esters and following detection of free SH-group of the released thiocholine. The diagnosis of OP/nerve agents poisoning is based on anamnesis, the clinical status of the intoxicated organism and on cholinesterase determination in the blood. Some principles of prophylaxis against OP/nerve agents poisoning comprising the administration of reversible cholinesterase inhibitors such as pyridostigmine (alone or in combination with other drugs), scavengers such as preparations of cholinesterases, some therapeutic drugs and possible combinations are given. Basic principles of the treatment of nerve agents/OP poisoning are described. New drugs for the treatment are under experimental study based on new approaches to the mechanism of action.


Author(s):  
Raymond F. Genovese ◽  
◽  
Sara J. Shippee ◽  
Jessica Bonnell ◽  
Bernard J. Benton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document